Advertisement

JOM

, Volume 66, Issue 11, pp 2360–2366 | Cite as

Employing Considerations of Criticality in Product Design

  • T. E. Graedel
  • Philip Nuss
Article

Abstract

With no agreed-on definition of critical materials, product and process designers have been unable to systematically address the critical materials issue. Using a comprehensive methodology, we have determined the criticality of 62 metals and metalloids—approximately two-thirds of the periodic table. We illustrate how the analyses were performed, provide an overview of criticality at the global level for all elements, and then present examples of how the criticality information could be used in making material-related choices in product and process design.

Keywords

Antimony Rhenium Cadmium Telluride Environmental Implication Critical Material 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    S. Kaplan, Risk Anal. 17, 407 (1997).CrossRefGoogle Scholar
  2. 2.
    B. Buijs and H. Sievers, Critical Thinking about Critical Minerals: Assessing Risks Related to Resource Security (Brussels: European Commission, 2012).Google Scholar
  3. 3.
    B. Achzet and C. Helbig, Resour. Policy 38, 435 (2013).CrossRefGoogle Scholar
  4. 4.
    European Commission, Report on Critical Raw Materials for the EU (Brussels: European Commission, 2014).Google Scholar
  5. 5.
    N. Nassar, R. Barr, M. Browning, Z. Diao, E. Friedlander, E.M. Harper, C. Henly, G. Kavlak, S. Kwatra, C. Jun, S. Warren, M.-Y. Yang, and T.E. Graedel, Environ. Sci. Technol. 46, 1071 (2012).CrossRefGoogle Scholar
  6. 6.
    P. Nuss, E.M. Harper, N.T. Nassar, B.K. Reck, and T.E. Graedel, Environ. Sci. Technol. 48, 4171 (2014).CrossRefGoogle Scholar
  7. 7.
    T.E. Graedel, R. Barr, C. Chandler, T. Chase, J. Choi, L. Christoffersen, E. Friedlander, C. Henly, C. Jun, N.T. Nassar, D. Schechner, S. Warren, M. Yang, and C. Zhu, Environ. Sci. Technol. 46, 1063 (2012).CrossRefGoogle Scholar
  8. 8.
    E.M. Harper, G. Kavlak, L. Burmeister, M.J. Eckelman, S. Erbis, V. Espinoza, P. Nuss, and T.E. Graedel, J. Ind. Ecol. (in press).Google Scholar
  9. 9.
    P. Nuss and M.J. Eckelman, PLoS ONE 9, e101298 (2014).CrossRefGoogle Scholar
  10. 10.
    Antimony Roskill, Global Industry Markets and Outlook (London: Roskill Information Services, 2012).Google Scholar
  11. 11.
    U.S. Geological Survey, Minerals Yearbook (Reston: U.S. Geological Survey, 2010).Google Scholar
  12. 12.
    U.S. Geological Survey, Mineral Commodity Summaries (Reston: U.S. Geological Survey, 2009).Google Scholar
  13. 13.
    S. Panousi, E.M. Harper, P. Nuss, M.J. Eckelman, A. Hakimian, and T.E. Graedel, J. Ind. Ecol. (in press).Google Scholar
  14. 14.
    N.T. Nassar, X. Du, and T.E. Graedel, J. Ind. Ecol. (in press).Google Scholar
  15. 15.
    E.M. Harper, Z. Diao, S. Panousi, P. Nuss, M.J. Eckelman, and T.E. Graedel, J. Ind. Ecol. (in review).Google Scholar
  16. 16.
    T.E. Graedel, E.M. Harper, N.T. Nassar, and B.K. Reck, Proc. Natl. Acad. Sci. (2013). doi: 10.1073/pnas.1312752110.
  17. 17.
    United Nations Environment Programme (UNEP), Recycling Rates of Metals—A Status Report (Paris: UNEP, 2011).Google Scholar
  18. 18.
    M.F. Ashby and K. Johnson, Materials and Design: The Art and Science of Material Selection in Product Design, 2nd ed. (Amsterdam: Butterworth-Heinemann, 2009).Google Scholar
  19. 19.
    A. Chipman, Nature 449, 131 (2007).CrossRefGoogle Scholar
  20. 20.
    D. Hanson, Chem. Eng. News 89, 28 (2011).Google Scholar
  21. 21.
    S.J. Duclos, J.P. Otto, and D.G. Konitzer, Mech. Eng. 132, 36 (2010).Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2014

Authors and Affiliations

  1. 1.Center for Industrial Ecology, School of Forestry and Environmental StudiesYale UniversityNew HavenUSA

Personalised recommendations