Skip to main content
Log in

Characterization of Plastic Deformation Induced by Shot-Peening in a Ni-Base Superalloy

  • Published:
JOM Aims and scope Submit manuscript

Abstract

The shot-peening process is currently employed in most industries to improve the longevity of components by inhibiting crack initiation as well as crack growth at the surface. The protective effect of shot peening has been mainly attributed to compressive stresses within the deformed layer. Intensive research has been carried out to quantify the near-surface residual stresses on entry into service and evolution throughout life. In nickel-base superalloys, the focus of research on the effects of shot-peening has performed using x-rays from either laboratory or synchrotron-based sources. However, this approach cannot evaluate in detail the deformation mechanisms nor the role of the γ′ precipitates in a nickel-base superalloy; the latter is responsible for its unique properties. Our study uses a complementary range of techniques to investigate in detail the microstructure and deformation mechanisms associated with shot-peening in a coarse-grained nickel-based superalloy strengthened with coherent γ′ precipitates. These include scanning electron microscopy and transmission electron microscopy, nanoindentation and micropillar compression. Accurate mapping of the dislocation structure produced throughout the deformed layers have been performed. Using an unconventional specimen preparation technique, it provides the basis for a more complete interpretation of how shot-peening inhibits fatigue cracking.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. R.L. Barrie, T.P. Gabb, J. Telesman, and P.T. Kantzos, Effectiveness of Shot Peening in Suppressing Fatigue Cracking at Non-Metallic Inclusions in Udimet™ 720 (Cleveland, OH: NASA, 2005).

    Google Scholar 

  2. R.L. Barrie, T.P. Gabb, J. Telesman, P.T. Kantzos, A. Prescenzi, T. Biles, and P.J. Bonacuse, Mater. Sci. Eng. A 474, 71 (2008).

    Article  Google Scholar 

  3. W.Z. Zhuang and G.R. Halford, Int. J. Fatigue 23, S31 (2001).

    Article  Google Scholar 

  4. D.J. Buchanan, R. John, and R.A. Brockman, J. Eng. Mater. Technol. 131, 031008 (2009).

    Article  Google Scholar 

  5. D.J. Buchanan, R. John, and R.A. Brockman, Superalloys 2008, ed. R.C. Reed, K.A. Green, P. Caron, T.P. Gabb, M.G. Fahrmann, E.S. Huron, and S.A. Woodard (Warrendale, PA: TMS, 2008), pp. 965–974.

    Chapter  Google Scholar 

  6. P.J. Withers, Rep. Prog. Phys. 70, 2211 (2007).

    Article  Google Scholar 

  7. S.B. Kim, J. Shackleton, M. Preuss, P.J. Withers, A. Evans, and G. Bruno, Metall. Mater. Trans. A 36, 3041 (2005).

    Article  Google Scholar 

  8. A. Evans, S. Kim, J. Shackleton, G. Bruno, M. Preuss, and P. Withers, Int. J. Fatigue 27, 1530 (2005).

    Article  Google Scholar 

  9. R. John, D.J. Buchanan, M.J. Caton, and S.K. Jha, Proc. Eng. 2, 1887 (2010).

    Article  Google Scholar 

  10. W. Cao, M. Khadhraoui, and B. Brenier, Mater. Sci. Technol. 10, 947 (1994).

    Article  Google Scholar 

  11. W.C. Liu, J. Dong, P. Zhang, A.M. Korsunsky, X. Song, and W.J. Ding, Mater. Sci. Eng. A 528, 5935 (2011).

    Article  Google Scholar 

  12. P. Juijerm, U. Noster, I. Altenberger, and B. Scholtes, Mater. Sci. Eng. A 379, 286 (2004).

    Article  Google Scholar 

  13. P. Prevéy, D. Hombach, and P. Mason, in Proceedings of the 17th Heat Treating Society Conference and Exposition and the 1st International Induction Heat Treating Symposium, ed. by D.L. Milam (Materials Park, OH, ASM, 1998), pp. 3–12

  14. I. Altenberger, B. Scholtes, U. Martin, and H. Oettel, Mater. Sci. Eng. A 264, 1 (1999).

    Article  Google Scholar 

  15. U. Martin, I. Altenberger, B. Scholtes, K. Kremmer, and H. Oettel, Mater. Sci. Eng. A 246, 69 (1998).

    Article  Google Scholar 

  16. U. Martin, I. Altenberger, B. Scholtes, K. Kremmer, and H. Oettel, Unpublished Research (1996)

  17. A.L. Ortiz, J.W. Tian, J.C. Villegas, L.L. Shaw, and P.K. Liaw, Acta Mater. 56, 413 (2008).

    Article  Google Scholar 

  18. L.L. Shaw, J. Villegas, J.-Y. Huang, and S. Chen, Mater. Sci. Eng. A 480, 75 (2008).

    Article  Google Scholar 

  19. L.L. Shaw, J.-W. Tian, A.L. Ortiz, K. Dai, J.C. Villegas, P.K. Liaw, R. Ren, and D.L. Klarstrom, Mater. Sci. Eng. A 527, 986 (2010).

    Article  Google Scholar 

  20. J.C. Villegas, L.L. Shaw, K. Dai, W. Yuan, J. Tian, P.K. Liaw, and D.L. Klarstrom, Phil. Mag. Lett. 85, 427 (2005).

    Article  Google Scholar 

  21. D.J. Child, G.D. West, and R.C. Thomson, Acta Mater. 59, 4825 (2011).

    Article  Google Scholar 

  22. R.J. Mitchell, J.A. Lemsky, R.R, H.Y. Li, L. Connor, and K.M. Perkins, in Superalloys 2008 (Warrendale, PA, TMS, 2008), pp. 347–356

  23. L. Connor (Ph.D. dissertation, University of Cambridge, Cambridge, UK, 2009)

  24. A. Manning, D. Knowles, and C. Small, European Patent Office (2002)

  25. E. Limpert, W.A. Stahel, and M. Abbt, BioScience (2001)

  26. B.J. Foss, S. Gray, M.C. Hardy, S. Stekovic, D.S. McPhail, and B.A. Shollock, Acta Mater. 61, 2548 (2013).

    Article  Google Scholar 

  27. O.M.D.M. Messé, S. Stekovic, M. Hardy, and C.M.F. Rae, Adv. Mater. Res. 891–892, 1289 (2014).

    Article  Google Scholar 

  28. S. Korte, R.J. Stearn, J.M. Wheeler, and W.J. Clegg, J. Mater. Res. 27, 167 (2011).

    Article  Google Scholar 

  29. S.B. Kim, A. Evans, J. Shackleton, G. Bruno, M. Preuss, and P.J. Withers, Metall. Mater. Trans. A 36A, 3041 (2005).

    Article  Google Scholar 

  30. H. Holzapfel, V. Schulze, and O. Vohringer, Mater. Sci. Eng. A 1998.

  31. S. Cruchley, M.P. Taylor, H.E. Evans, P. Bowen, M.C. Hardy, and S. Stekovic, Superalloys 2012, eds. E.S. Huron, R.C. Reed, M.C. Hardy, M.J. Mills, R.E. Montero, P.D. Portella, and J. Telesman (Hoboken, NJ: Wiley, 2012), pp. 751–758.

Download references

Acknowledgements

The authors would like to acknowledge the efforts of the EPSRC, Rolls-Royce plc. for their financial support in the completion of this work (EPSRC and Rolls-Royce Strategic Partnership: EP/H500375/1 and EP/H022309 and the TSB project SILOET TP number: AB266C/4). Rolls-Royce plc. is also gratefully acknowledged for supplying the material. The authors would also like to thank Dr. Claudia Walter for the introduction to FIB scripting that enabled the production of micropillars and subsequent compression.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. M. D. M. Messé.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Messé, O.M.D.M., Stekovic, S., Hardy, M.C. et al. Characterization of Plastic Deformation Induced by Shot-Peening in a Ni-Base Superalloy. JOM 66, 2502–2515 (2014). https://doi.org/10.1007/s11837-014-1184-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-014-1184-8

Keywords

Navigation