Skip to main content
Log in

Effect of Grain Boundaries on Krypton Segregation Behavior in Irradiated Uranium Dioxide

  • Published:
JOM Aims and scope Submit manuscript

Abstract

Fission products, such as krypton (Kr), are known to be insoluble within UO2, segregating toward grain boundaries and eventually leading to a lowering in thermal conductivity and fuel swelling. Recent computational studies have identified that differences in grain boundary structure have a significant effect on the segregation behavior of fission products. However, experimental work supporting these simulations is lacking. Atom probe tomography was used to measure the Kr distribution across grain boundaries in UO2. Polycrystalline depleted UO2 samples were irradiated with 0.7 MeV and 1.8 MeV Kr-ions and annealed to 1000°C, 1300°C, and 1600°C for 1 h to produce a Kr-bubble dominated microstructure. The results of this work indicate a strong dependence of Kr concentration as a function of grain boundary structure. Temperature also influences grain boundary chemistry with greater Kr concentration evident at higher temperatures, resulting in a reduced Kr concentration in the bulk. Although Kr segregation takes place at elevated temperatures, no change in grain size or texture was observed in the irradiated UO2 samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. H.J. Matzke, Radiat. Eff. 53, 219 (1980).

    Article  Google Scholar 

  2. D.R. Olander and P. Van Uffelen, J. Nucl. Mater. 288, 137 (2001).

    Article  Google Scholar 

  3. D.R. Olander, Fundamental Aspects of the Performance of Nuclear Reactor Fuel Elements (Springfield, VA: Technical Information Center, Office of Public Affairs, 1976).

    Google Scholar 

  4. P.V. Nerikar, D.C. Parfitt, L.A. Casillas Trujillo, D.A. Andersson, C. Unal, S.B. Sinnott, R.W. Grimes, B.P. Uberuaga, and C.R. Stanek, Phys. Rev. B 84, 174105 (2011).

    Article  Google Scholar 

  5. E. Vincent-Aublant, J.M. Delaye, and L. Van Brutzel, J. Nucl. Mater. 392, 114 (2009).

    Article  Google Scholar 

  6. P.C. Millett, M. Tonks, and S.B. Biner, J. Appl. Phys. 111, 083511 (2012).

    Article  Google Scholar 

  7. I. Zacharie, S. Lansiart, P. Combette, M. Trotabas, M. Coster, and M. Groos, J. Nucl. Mater. 255, 92 (1998).

    Article  Google Scholar 

  8. J. Spino and P. Peerani, J. Nucl. Mater. 375, 8 (2008).

    Article  Google Scholar 

  9. P.V. Nerikar, K. Rudman, T.G. Desai, D. Byler, C. Unal, K.J. McClellan, S.R. Phillpot, S.B. Sinnott, P. Peralta, B.P. Uberuaga, and C.R. Stanek, J. Am. Ceram. Soc. 94, 1893 (2011).

    Article  Google Scholar 

  10. K. Rudman, P. Dickerson, D. Byler, R. McDonald, H. Lim, P. Peralta, C. Stanek, and K. McClellan, Nucl. Technol. 182, 145 (2013).

    Google Scholar 

  11. Q. Wang, G. Lian, and E.C. Dickey, Acta Mater. 52, 809 (2004).

    Article  Google Scholar 

  12. E.C. Dickey, X. Fan, and S.J. Pennycook, J. Am. Ceram. Soc. 84, 1361 (2001).

    Article  Google Scholar 

  13. Y. Lei, Y. Ito, N.D. Browning, and T.J. Mazanec, J. Am. Ceram. Soc. 85, 2359 (2002).

    Article  Google Scholar 

  14. K. Thompson, D. Lawrence, D.J. Larson, J.D. Olson, T.F. Kelly, and B. Gorman, Ultramicroscopy 107, 131 (2007).

    Article  Google Scholar 

  15. W. Navidi, Statistics for Engineers and Scientists, 3rd ed. (New York, NY: McGraw-Hill, 2011).

    Google Scholar 

  16. ASTM E112-96, Standard Test Method for Determining Average Grain Size, 2006, pp. 283–299.

  17. D.R. Olander, Fundamental Aspects of Nuclear Reactor Fuel Elements (Washington, DC: U.S. Department of Energy, 1976).

    Google Scholar 

  18. C.R.A. Catlow, Proc. R. Soc. London, Serv. A 364, 473 (1978).

    Article  Google Scholar 

  19. J.D. Powers and A.M. Glaeser, Interface Sci. 6, 23 (1998).

    Article  Google Scholar 

  20. Y.-M. Chiang, D. Birnie III, and W.D. Kingery, Physical Ceramics: Principles for Ceramic Science and Engineering (New York, NY: Wiley, 1997).

    Google Scholar 

  21. F.J. Humphreys, J. Mater. Sci. 36, 3833 (2001).

    Article  Google Scholar 

  22. W.D. Kingery, J. Am. Ceram. Soc. 57, 74 (1974).

    Article  Google Scholar 

  23. L.V. Brutzel and E. Vincent-Aublant, J. Nucl. Mater. 377, 522 (2008).

    Article  Google Scholar 

  24. J.H. Evans, J. Nucl. Mater. 225, 302 (1995).

    Article  Google Scholar 

  25. W.D. Kingery, J. Am. Ceram. Soc. 57, 1 (1974).

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported as part of the Center for Materials Science of Nuclear Fuel, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number FWP 1356. Use of the FIB and atom probe instrumentation at the Center for Advanced Energy Studies was supported by the U.S. Department of Energy, Office of Nuclear Energy under DOE Idaho Operations Office Contract DE-AC07-051D14517. The authors would also like to thank Dr. Andrew Nelson for providing the UO2 samples used in this study and Dr. Yaqaio Wu for assistance in running the atom probe. The Kr irradiation was carried out in the Frederick Seitz Materials Research Laboratory Central Facilities at the University of Illinois-Urbana Champaign, and the authors would like to thank Doug Jeffers for his assistance in performing the irradiation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michele V. Manuel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Valderrama, B., He, L., Henderson, H.B. et al. Effect of Grain Boundaries on Krypton Segregation Behavior in Irradiated Uranium Dioxide. JOM 66, 2562–2568 (2014). https://doi.org/10.1007/s11837-014-1182-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-014-1182-x

Keywords

Navigation