Advertisement

JOM

, Volume 66, Issue 12, pp 2562–2568 | Cite as

Effect of Grain Boundaries on Krypton Segregation Behavior in Irradiated Uranium Dioxide

  • Billy Valderrama
  • Lingfeng He
  • Hunter B. Henderson
  • Janne Pakarinen
  • Brian Jaques
  • Jian Gan
  • Darryl P. Butt
  • Todd R. Allen
  • Michele V. Manuel
Article

Abstract

Fission products, such as krypton (Kr), are known to be insoluble within UO2, segregating toward grain boundaries and eventually leading to a lowering in thermal conductivity and fuel swelling. Recent computational studies have identified that differences in grain boundary structure have a significant effect on the segregation behavior of fission products. However, experimental work supporting these simulations is lacking. Atom probe tomography was used to measure the Kr distribution across grain boundaries in UO2. Polycrystalline depleted UO2 samples were irradiated with 0.7 MeV and 1.8 MeV Kr-ions and annealed to 1000°C, 1300°C, and 1600°C for 1 h to produce a Kr-bubble dominated microstructure. The results of this work indicate a strong dependence of Kr concentration as a function of grain boundary structure. Temperature also influences grain boundary chemistry with greater Kr concentration evident at higher temperatures, resulting in a reduced Kr concentration in the bulk. Although Kr segregation takes place at elevated temperatures, no change in grain size or texture was observed in the irradiated UO2 samples.

Keywords

Scanning Transmission Electron Microscope Atom Probe Tomography Segregation Behavior Nonirradiated Sample Postirradiation Annealing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This work is supported as part of the Center for Materials Science of Nuclear Fuel, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number FWP 1356. Use of the FIB and atom probe instrumentation at the Center for Advanced Energy Studies was supported by the U.S. Department of Energy, Office of Nuclear Energy under DOE Idaho Operations Office Contract DE-AC07-051D14517. The authors would also like to thank Dr. Andrew Nelson for providing the UO2 samples used in this study and Dr. Yaqaio Wu for assistance in running the atom probe. The Kr irradiation was carried out in the Frederick Seitz Materials Research Laboratory Central Facilities at the University of Illinois-Urbana Champaign, and the authors would like to thank Doug Jeffers for his assistance in performing the irradiation.

References

  1. 1.
    H.J. Matzke, Radiat. Eff. 53, 219 (1980).CrossRefGoogle Scholar
  2. 2.
    D.R. Olander and P. Van Uffelen, J. Nucl. Mater. 288, 137 (2001).CrossRefGoogle Scholar
  3. 3.
    D.R. Olander, Fundamental Aspects of the Performance of Nuclear Reactor Fuel Elements (Springfield, VA: Technical Information Center, Office of Public Affairs, 1976).Google Scholar
  4. 4.
    P.V. Nerikar, D.C. Parfitt, L.A. Casillas Trujillo, D.A. Andersson, C. Unal, S.B. Sinnott, R.W. Grimes, B.P. Uberuaga, and C.R. Stanek, Phys. Rev. B 84, 174105 (2011).CrossRefGoogle Scholar
  5. 5.
    E. Vincent-Aublant, J.M. Delaye, and L. Van Brutzel, J. Nucl. Mater. 392, 114 (2009).CrossRefGoogle Scholar
  6. 6.
    P.C. Millett, M. Tonks, and S.B. Biner, J. Appl. Phys. 111, 083511 (2012).CrossRefGoogle Scholar
  7. 7.
    I. Zacharie, S. Lansiart, P. Combette, M. Trotabas, M. Coster, and M. Groos, J. Nucl. Mater. 255, 92 (1998).CrossRefGoogle Scholar
  8. 8.
    J. Spino and P. Peerani, J. Nucl. Mater. 375, 8 (2008).CrossRefGoogle Scholar
  9. 9.
    P.V. Nerikar, K. Rudman, T.G. Desai, D. Byler, C. Unal, K.J. McClellan, S.R. Phillpot, S.B. Sinnott, P. Peralta, B.P. Uberuaga, and C.R. Stanek, J. Am. Ceram. Soc. 94, 1893 (2011).CrossRefGoogle Scholar
  10. 10.
    K. Rudman, P. Dickerson, D. Byler, R. McDonald, H. Lim, P. Peralta, C. Stanek, and K. McClellan, Nucl. Technol. 182, 145 (2013).Google Scholar
  11. 11.
    Q. Wang, G. Lian, and E.C. Dickey, Acta Mater. 52, 809 (2004).CrossRefGoogle Scholar
  12. 12.
    E.C. Dickey, X. Fan, and S.J. Pennycook, J. Am. Ceram. Soc. 84, 1361 (2001).CrossRefGoogle Scholar
  13. 13.
    Y. Lei, Y. Ito, N.D. Browning, and T.J. Mazanec, J. Am. Ceram. Soc. 85, 2359 (2002).CrossRefGoogle Scholar
  14. 14.
    K. Thompson, D. Lawrence, D.J. Larson, J.D. Olson, T.F. Kelly, and B. Gorman, Ultramicroscopy 107, 131 (2007).CrossRefGoogle Scholar
  15. 15.
    W. Navidi, Statistics for Engineers and Scientists, 3rd ed. (New York, NY: McGraw-Hill, 2011).Google Scholar
  16. 16.
    ASTM E112-96, Standard Test Method for Determining Average Grain Size, 2006, pp. 283–299.Google Scholar
  17. 17.
    D.R. Olander, Fundamental Aspects of Nuclear Reactor Fuel Elements (Washington, DC: U.S. Department of Energy, 1976).Google Scholar
  18. 18.
    C.R.A. Catlow, Proc. R. Soc. London, Serv. A 364, 473 (1978).CrossRefGoogle Scholar
  19. 19.
    J.D. Powers and A.M. Glaeser, Interface Sci. 6, 23 (1998).CrossRefGoogle Scholar
  20. 20.
    Y.-M. Chiang, D. Birnie III, and W.D. Kingery, Physical Ceramics: Principles for Ceramic Science and Engineering (New York, NY: Wiley, 1997).Google Scholar
  21. 21.
    F.J. Humphreys, J. Mater. Sci. 36, 3833 (2001).CrossRefGoogle Scholar
  22. 22.
    W.D. Kingery, J. Am. Ceram. Soc. 57, 74 (1974).CrossRefGoogle Scholar
  23. 23.
    L.V. Brutzel and E. Vincent-Aublant, J. Nucl. Mater. 377, 522 (2008).CrossRefGoogle Scholar
  24. 24.
    J.H. Evans, J. Nucl. Mater. 225, 302 (1995).CrossRefGoogle Scholar
  25. 25.
    W.D. Kingery, J. Am. Ceram. Soc. 57, 1 (1974).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2014

Authors and Affiliations

  • Billy Valderrama
    • 1
  • Lingfeng He
    • 2
  • Hunter B. Henderson
    • 1
  • Janne Pakarinen
    • 2
  • Brian Jaques
    • 3
  • Jian Gan
    • 4
  • Darryl P. Butt
    • 3
  • Todd R. Allen
    • 2
    • 4
  • Michele V. Manuel
    • 1
  1. 1.Department of Materials Science and EngineeringUniversity of FloridaGainesvilleUSA
  2. 2.Department of Engineering PhysicsUniversity of Wisconsin-MadisonMadisonUSA
  3. 3.Department of Materials Science and EngineeringBoise State UniversityBoiseUSA
  4. 4.Idaho National LaboratoryIdaho FallsUSA

Personalised recommendations