A New Polycrystalline Co-Ni Superalloy

Abstract

In 2006, a new-ordered L12 phase, Co3(Al,W), was discovered that can form coherently in a face-centered cubic (fcc) A1 Co matrix. Since then, a community has developed that is attempting to take these alloys forward into practical applications in gas turbines. A new candidate polycrystalline Co-Ni γ/γ′ superalloy, V208C, is presented that has the nominal composition 36Co-35Ni-15Cr-10Al-3W-1Ta (at.%). The alloy was produced by conventional powder metallurgy superalloy methods. After forging, a γ′ fraction of ~56% and a secondary γ′ size of 88 nm were obtained, with a grain size of 2.5 μm. The solvus temperature was 1000°C. The density was found to be 8.52 g cm−3, which is similar to existing Ni alloys with this level of γ′. The alloy showed the flow stress anomaly and a yield strength of 920 MPa at room temperature and 820 MPa at 800°C, similar to that of Mar-M247. These values are significantly higher than those found for either conventional solution and carbide-strengthened Co alloys or the γ/γ′ Co superalloys presented in the literature thus far. The oxidation resistance, with a mass gain of 0.08 mg cm−2 in 100 h at 800°C, is also comparable with that of existing high-temperature Ni superalloys. These results suggest that Co-based and Co-Ni superalloys may hold some promise for the future in gas turbine applications.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. 1.

    J. Sato, T. Omori, K. Oikawa, I. Ohnuma, R. Kainuma, and K. Ishida, Science 312, 90 (2006).

    Article  Google Scholar 

  2. 2.

    M. Tsunekane, A. Suzuki, and T.M. Pollock, Intermetallics 19, 636 (2011).

    Article  Google Scholar 

  3. 3.

    L. Klein, Y. Shen, M.S. Killian, and S. Virtanen, Corros. Sci. 53, 2713 (2011).

    Article  Google Scholar 

  4. 4.

    A. Suzuki, G.C. DeWolf, and T.M. Pollock, Scripta Mater. 56, 385 (2007).

    Article  Google Scholar 

  5. 5.

    T.M. Pollock and A.S. Argon, Acta Metall. Mater. 40, 1 (1992).

    Article  Google Scholar 

  6. 6.

    L. Kovarik, R.R. Unocic, Ju. Li, C. Shen, Y. Wang, and M.J. Mills, Prog. Mater Sci. 54, 839 (2009).

    Article  Google Scholar 

  7. 7.

    V.A. Vorontsov, L. Kovarik, M.J. Mills, and C.M.F. Rae, Acta Mater. 60, 4866 (2012).

    Article  Google Scholar 

  8. 8.

    C.M.F. Rae and R.C. Reed, Acta Mater. 55, 1067 (2007).

    Article  Google Scholar 

  9. 9.

    D. Dye, M. Knop, H.-Y. Yan, M.C. Hardy, and H.J. Stone, GB patent application 1312000.1 (2013).

  10. 10.

    K. Shinagawa, T. Omori, J. Sato, K. Oikawa, I. Ohnuma, R. Kainuma, and K. Ishida, Mater. Trans. 49, 1474 (2008).

    Article  Google Scholar 

  11. 11.

    H.-Y. Yan, V.A. Vorontsov, and D. Dye, Intermetallics 48, 44 (2014).

    Article  Google Scholar 

  12. 12.

    A. Bauer, S. Neumeier, F. Pyczak, and M. Göken, Superalloys 2012, eds. E.S. Huron, R.C. Reed, M.C. Hardy, M.J. Mills, R.E. Montero, P.D. Portella, and J. Telesman (Warrendale, PA: The Minerals, Metals & Materials Society; Hoboken, NJ: John Wiley & Sons, 2012), pp. 695–703.

  13. 13.

    T.P. Gabb, J. Gayda, J. Telesman, and P. Kantzos, Thermal and Mechanical Property Characterization of the Advanced Disk Alloy LSHR, Technical Report No. NASA/TM2005-213645 (Washington, DC: NASA, 2005).

  14. 14.

    S. Meher, H.Y. Yan, S. Nag, D. Dye, and R. Banerjee, Scripta Mater. 67, 850 (2012).

    Article  Google Scholar 

  15. 15.

    R.J. Mitchell, H.Y. Li, and Z.W. Huang, J. Mater. Process. Technol. 209, 1011 (2009).

    Article  Google Scholar 

  16. 16.

    A. Cerezo, P.H. Clifton, M.J. Galtrey, C.J. Humphreys, T.F. Kelly, D.J. Larson, S. Lozano-Perez, E.A. Marquis, R.A. Oliver, G. Sha, K. Thompson, M. Zandbergen, and R.L. Alvis, Mater. Today 10, 36 (2007).

    Article  Google Scholar 

  17. 17.

    T.F. Kelly and D.J. Larson, Mater. Charact. 44, 59 (2000).

    Article  Google Scholar 

  18. 18.

    K. Thompson, D. Lawrence, D.J. Larson, J.D. Olson, T.F. Kelly, and B. Gorman, Ultramicroscopy 107, 131 (2007).

    Article  Google Scholar 

  19. 19.

    O.C. Hellman, J.A. Vandenbroucke, J. Rüsing, D. Isheim, and D.N. Seidman, Microsc. Microanal. 6, 437 (2000).

    Google Scholar 

  20. 20.

    S. Meher and R. Banerjee, Intermetallics 49, 138 (2014).

    Article  Google Scholar 

  21. 21.

    J.Y. Hwang, R. Banerjee, J. Tiley, R. Srinivasan, G.B. Viswanathan, and H.L. Fraser, Metall. Mater. Trans. A 40, 24 (2009).

    Article  Google Scholar 

  22. 22.

    R.C. Reed, The Superalloys—Fundamentals and Applications, 1st ed. (Cambridge, MA: Cambridge University Press, 2006).

    Google Scholar 

  23. 23.

    A. Suzuki and T.M. Pollock, Acta Mater. 56, 1288 (2008).

    Article  Google Scholar 

  24. 24.

    M.J. Donachie, Superalloys: A Technical Guide (Materials Park, OH: ASM International, 2002).

    Google Scholar 

  25. 25.

    M. Knop, V.A. Vorontsov, M.C. Hardy, and D. Dye, Proceedings of the Eurosuperalloys 2014, Hyères, France, May 2014. MATEC Web of Conferences, vol. 14 (2014), p. 18003. doi:10.1051/matecconf/20141418003.

  26. 26.

    H.-Y. Yan, V.A. Vorontsov, and D. Dye, Corros. Sci. 83, 382 (2014).

    Article  Google Scholar 

  27. 27.

    M.S. Titus, A. Suzuki, and T.M. Pollock, Scripta Mater. 66, 574 (2012).

    Article  Google Scholar 

  28. 28.

    M.S. Titus, A. Suzuki, and T.M. Pollock, Superalloys 2012, eds. E.S. Huron, R.C. Reed, M.C. Hardy, M.J. Mills, R.E. Montero, P.D. Portella and J. Telesman (Warrendale, PA: The Minerals, Metals & Materials Society; Hoboken, NJ: John Wiley & Sons, 2012), pp. 823–832.

  29. 29.

    Y.M. Eggeler, M.S. Titus, A. Suzuki, and T.M. Pollock, Acta Mater. 77, 352 (2014).

    Article  Google Scholar 

  30. 30.

    T.M. Pollock, J. Dibbern, M. Tsunekane, and A. Suzuki, JOM 62 (1), 58 (2010).

    Article  Google Scholar 

  31. 31.

    K. Shinagawa, T. Omori, K. Oikawa, R. Kainuma, and K. Ishida, Scripta Mater. 61, 612 (2009).

    Article  Google Scholar 

  32. 32.

    L. Klein, A. Bauer, S. Neumeier, M. Göken, and S. Virtanen, Corros. Sci. 53, 2027 (2011).

    Article  Google Scholar 

  33. 33.

    H.S. Kitaguchi, H.Y. Li, H.E. Evans, R.G. Ding, I.P. Jones, P. Baxter, and G. Bowen, Acta Mater. 61, 1968 (2013).

    Article  Google Scholar 

  34. 34.

    R. Jiang, S. Everitt, M. Lewandowski, N. Gao, and P.A.S. Reed, Int. J. Fatigue 62, 217 (2014).

    Article  Google Scholar 

  35. 35.

    M. Ooshima, K. Tanaka, N.L. Okamoto, K. Kishida, and H. Inui, J. Alloys Compd. 508, 71 (2010).

    Article  Google Scholar 

  36. 36.

    A. Bauer, S. Neumeier, F. Pyczak, and M. Göken, Scripta Mater. 63, 1197 (2010).

    Article  Google Scholar 

  37. 37.

    K. Ishida, Proc. Eurosuperalloys 2014 (in press).

Download references

Acknowledgements

The authors would like to acknowledge the financial support provided by Rolls-Royce plc, Imperial College London, and EPSRC (U.K.) Grant EP/H022309/1. Useful conversations with Drs Vassili Vorontsov, Hui-Yu Yan (Imperial), and Howard Stone (Cambridge) are also acknowledged.

Author information

Affiliations

Authors

Corresponding author

Correspondence to D. Dye.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Knop, M., Mulvey, P., Ismail, F. et al. A New Polycrystalline Co-Ni Superalloy. JOM 66, 2495–2501 (2014). https://doi.org/10.1007/s11837-014-1175-9

Download citation

Keywords

  • Flow Stress
  • Disk Alloy
  • Cube Plane
  • Blade Alloy
  • Atom Probe Tomography Experiment