JOM

, Volume 66, Issue 12, pp 2495–2501 | Cite as

A New Polycrystalline Co-Ni Superalloy

  • M. Knop
  • P. Mulvey
  • F. Ismail
  • A. Radecka
  • K. M. Rahman
  • T. C. Lindley
  • B. A. Shollock
  • M. C. Hardy
  • M. P. Moody
  • T. L. Martin
  • P. A. J. Bagot
  • D. Dye
Article

Abstract

In 2006, a new-ordered L12 phase, Co3(Al,W), was discovered that can form coherently in a face-centered cubic (fcc) A1 Co matrix. Since then, a community has developed that is attempting to take these alloys forward into practical applications in gas turbines. A new candidate polycrystalline Co-Ni γ/γ′ superalloy, V208C, is presented that has the nominal composition 36Co-35Ni-15Cr-10Al-3W-1Ta (at.%). The alloy was produced by conventional powder metallurgy superalloy methods. After forging, a γ′ fraction of ~56% and a secondary γ′ size of 88 nm were obtained, with a grain size of 2.5 μm. The solvus temperature was 1000°C. The density was found to be 8.52 g cm−3, which is similar to existing Ni alloys with this level of γ′. The alloy showed the flow stress anomaly and a yield strength of 920 MPa at room temperature and 820 MPa at 800°C, similar to that of Mar-M247. These values are significantly higher than those found for either conventional solution and carbide-strengthened Co alloys or the γ/γ′ Co superalloys presented in the literature thus far. The oxidation resistance, with a mass gain of 0.08 mg cm−2 in 100 h at 800°C, is also comparable with that of existing high-temperature Ni superalloys. These results suggest that Co-based and Co-Ni superalloys may hold some promise for the future in gas turbine applications.

References

  1. 1.
    J. Sato, T. Omori, K. Oikawa, I. Ohnuma, R. Kainuma, and K. Ishida, Science 312, 90 (2006).CrossRefGoogle Scholar
  2. 2.
    M. Tsunekane, A. Suzuki, and T.M. Pollock, Intermetallics 19, 636 (2011).CrossRefGoogle Scholar
  3. 3.
    L. Klein, Y. Shen, M.S. Killian, and S. Virtanen, Corros. Sci. 53, 2713 (2011).CrossRefGoogle Scholar
  4. 4.
    A. Suzuki, G.C. DeWolf, and T.M. Pollock, Scripta Mater. 56, 385 (2007).CrossRefGoogle Scholar
  5. 5.
    T.M. Pollock and A.S. Argon, Acta Metall. Mater. 40, 1 (1992).CrossRefGoogle Scholar
  6. 6.
    L. Kovarik, R.R. Unocic, Ju. Li, C. Shen, Y. Wang, and M.J. Mills, Prog. Mater Sci. 54, 839 (2009).CrossRefGoogle Scholar
  7. 7.
    V.A. Vorontsov, L. Kovarik, M.J. Mills, and C.M.F. Rae, Acta Mater. 60, 4866 (2012).CrossRefGoogle Scholar
  8. 8.
    C.M.F. Rae and R.C. Reed, Acta Mater. 55, 1067 (2007).CrossRefGoogle Scholar
  9. 9.
    D. Dye, M. Knop, H.-Y. Yan, M.C. Hardy, and H.J. Stone, GB patent application 1312000.1 (2013).Google Scholar
  10. 10.
    K. Shinagawa, T. Omori, J. Sato, K. Oikawa, I. Ohnuma, R. Kainuma, and K. Ishida, Mater. Trans. 49, 1474 (2008).CrossRefGoogle Scholar
  11. 11.
    H.-Y. Yan, V.A. Vorontsov, and D. Dye, Intermetallics 48, 44 (2014).CrossRefGoogle Scholar
  12. 12.
    A. Bauer, S. Neumeier, F. Pyczak, and M. Göken, Superalloys 2012, eds. E.S. Huron, R.C. Reed, M.C. Hardy, M.J. Mills, R.E. Montero, P.D. Portella, and J. Telesman (Warrendale, PA: The Minerals, Metals & Materials Society; Hoboken, NJ: John Wiley & Sons, 2012), pp. 695–703.Google Scholar
  13. 13.
    T.P. Gabb, J. Gayda, J. Telesman, and P. Kantzos, Thermal and Mechanical Property Characterization of the Advanced Disk Alloy LSHR, Technical Report No. NASA/TM2005-213645 (Washington, DC: NASA, 2005).Google Scholar
  14. 14.
    S. Meher, H.Y. Yan, S. Nag, D. Dye, and R. Banerjee, Scripta Mater. 67, 850 (2012).CrossRefGoogle Scholar
  15. 15.
    R.J. Mitchell, H.Y. Li, and Z.W. Huang, J. Mater. Process. Technol. 209, 1011 (2009).CrossRefGoogle Scholar
  16. 16.
    A. Cerezo, P.H. Clifton, M.J. Galtrey, C.J. Humphreys, T.F. Kelly, D.J. Larson, S. Lozano-Perez, E.A. Marquis, R.A. Oliver, G. Sha, K. Thompson, M. Zandbergen, and R.L. Alvis, Mater. Today 10, 36 (2007).CrossRefGoogle Scholar
  17. 17.
    T.F. Kelly and D.J. Larson, Mater. Charact. 44, 59 (2000).CrossRefGoogle Scholar
  18. 18.
    K. Thompson, D. Lawrence, D.J. Larson, J.D. Olson, T.F. Kelly, and B. Gorman, Ultramicroscopy 107, 131 (2007).CrossRefGoogle Scholar
  19. 19.
    O.C. Hellman, J.A. Vandenbroucke, J. Rüsing, D. Isheim, and D.N. Seidman, Microsc. Microanal. 6, 437 (2000).Google Scholar
  20. 20.
    S. Meher and R. Banerjee, Intermetallics 49, 138 (2014).CrossRefGoogle Scholar
  21. 21.
    J.Y. Hwang, R. Banerjee, J. Tiley, R. Srinivasan, G.B. Viswanathan, and H.L. Fraser, Metall. Mater. Trans. A 40, 24 (2009).CrossRefGoogle Scholar
  22. 22.
    R.C. Reed, The Superalloys—Fundamentals and Applications, 1st ed. (Cambridge, MA: Cambridge University Press, 2006).Google Scholar
  23. 23.
    A. Suzuki and T.M. Pollock, Acta Mater. 56, 1288 (2008).CrossRefGoogle Scholar
  24. 24.
    M.J. Donachie, Superalloys: A Technical Guide (Materials Park, OH: ASM International, 2002).Google Scholar
  25. 25.
    M. Knop, V.A. Vorontsov, M.C. Hardy, and D. Dye, Proceedings of the Eurosuperalloys 2014, Hyères, France, May 2014. MATEC Web of Conferences, vol. 14 (2014), p. 18003. doi:10.1051/matecconf/20141418003.
  26. 26.
    H.-Y. Yan, V.A. Vorontsov, and D. Dye, Corros. Sci. 83, 382 (2014).CrossRefGoogle Scholar
  27. 27.
    M.S. Titus, A. Suzuki, and T.M. Pollock, Scripta Mater. 66, 574 (2012).CrossRefGoogle Scholar
  28. 28.
    M.S. Titus, A. Suzuki, and T.M. Pollock, Superalloys 2012, eds. E.S. Huron, R.C. Reed, M.C. Hardy, M.J. Mills, R.E. Montero, P.D. Portella and J. Telesman (Warrendale, PA: The Minerals, Metals & Materials Society; Hoboken, NJ: John Wiley & Sons, 2012), pp. 823–832.Google Scholar
  29. 29.
    Y.M. Eggeler, M.S. Titus, A. Suzuki, and T.M. Pollock, Acta Mater. 77, 352 (2014).CrossRefGoogle Scholar
  30. 30.
    T.M. Pollock, J. Dibbern, M. Tsunekane, and A. Suzuki, JOM 62 (1), 58 (2010).CrossRefGoogle Scholar
  31. 31.
    K. Shinagawa, T. Omori, K. Oikawa, R. Kainuma, and K. Ishida, Scripta Mater. 61, 612 (2009).CrossRefGoogle Scholar
  32. 32.
    L. Klein, A. Bauer, S. Neumeier, M. Göken, and S. Virtanen, Corros. Sci. 53, 2027 (2011).CrossRefGoogle Scholar
  33. 33.
    H.S. Kitaguchi, H.Y. Li, H.E. Evans, R.G. Ding, I.P. Jones, P. Baxter, and G. Bowen, Acta Mater. 61, 1968 (2013).CrossRefGoogle Scholar
  34. 34.
    R. Jiang, S. Everitt, M. Lewandowski, N. Gao, and P.A.S. Reed, Int. J. Fatigue 62, 217 (2014).CrossRefGoogle Scholar
  35. 35.
    M. Ooshima, K. Tanaka, N.L. Okamoto, K. Kishida, and H. Inui, J. Alloys Compd. 508, 71 (2010).CrossRefGoogle Scholar
  36. 36.
    A. Bauer, S. Neumeier, F. Pyczak, and M. Göken, Scripta Mater. 63, 1197 (2010).CrossRefGoogle Scholar
  37. 37.
    K. Ishida, Proc. Eurosuperalloys 2014 (in press).Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2014

Authors and Affiliations

  • M. Knop
    • 1
  • P. Mulvey
    • 1
  • F. Ismail
    • 1
  • A. Radecka
    • 1
  • K. M. Rahman
    • 1
  • T. C. Lindley
    • 1
  • B. A. Shollock
    • 1
    • 2
  • M. C. Hardy
    • 3
  • M. P. Moody
    • 4
  • T. L. Martin
    • 4
  • P. A. J. Bagot
    • 4
  • D. Dye
    • 1
  1. 1.Department of MaterialsRoyal School of Mines, Imperial College LondonLondonUK
  2. 2.WMG, University of WarwickCoventryUK
  3. 3.Rolls-Royce plcDerbyUK
  4. 4.Department of MaterialsUniversity of OxfordOxfordUK

Personalised recommendations