Skip to main content

Three-Dimensional Atom-Probe Tomographic Analyses of Lead-Telluride Based Thermoelectric Materials

Abstract

Precipitates in bulk p-type thermoelectric materials, PbTe-SrTe and PbTe-PbS, are studied using three-dimensional (3-D) atom-probe tomography (APT). APT is capable of characterizing chemically materials in 3-D with subnano-scale spatial resolution on an atom-by-atom basis, which enables us to characterize secondary phases in the PbTe matrix as well as the dopant distributions at different imperfections. We demonstrate that APT provides accurate information about the compositions and morphologies of nanoprecipitates. In the PbTe-SrTe system, different morphology of precipitates is observed and the SrTe composition is confirmed. Also, segregation of Na dopants at mesoscale imperfections, dislocations and grain boundaries, and at matrix/precipitate interfaces is observed. In the PbTe-PbS system, PbS precipitates are observed. The PbS precipitates exhibit faceting, and have a morphology that depends on the bulk Na concentration. A predominance of {100} faceted precipitates is observed for 2 mol.% Na. Using 3-D APT, we demonstrate that Na segregation at matrix/precipitate interfaces is most likely responsible for the change in their morphologies, which occurs by reducing the interfacial free energy of {100} facets.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. D.M. Rowe, CRC Handbook of Thermoelectrics: Macro to Nano (Boca Raton, FL: CRC Press, 2006).

    Google Scholar 

  2. T. Tritt, Recent Trends in Thermoelectric Materials Research, Part One (San Diego: Academic Press, 2000).

    Google Scholar 

  3. T. Tritt, Recent Trends in Thermoelectric Materials Research, Part Two (San Diego: Academic Press, 2000).

    Google Scholar 

  4. T. Tritt, Recent Trends in Thermoelectric Materials Research: Part Three (San Diego: Academic Press, 2001).

    Google Scholar 

  5. G.J. Snyder and E.S. Toberer, Nat. Mater. 7, 105 (2008).

    Article  Google Scholar 

  6. M.G. Kanatzidis, Chem. Mater. 22, 648 (2009).

    Article  Google Scholar 

  7. K. Biswas, J.Q. He, Q.C. Zhang, G.Y. Wang, C. Uher, V.P. Dravid, and M.G. Kanatzidis, Nat. Chem. 3, 160 (2011).

    Article  Google Scholar 

  8. D.N. Seidman and K. Stiller, MRS Bull. 34, 717 (2009).

    Article  Google Scholar 

  9. D. Blavette, A. Bostel, J.M. Sarrau, B. Deconihout, and A. Menand, Nature 363, 432 (1993).

    Article  Google Scholar 

  10. T.F. Kelly and D.J. Larson, Annu. Rev. Mater. Res. 42, 1 (2012).

    Article  Google Scholar 

  11. J.L. Lensch-Falk, J.D. Sugar, M.A. Hekmaty, and D.L. Medlin, J. Alloy. Compd. 504, 37 (2010).

    Article  Google Scholar 

  12. K. Biswas, J.Q. He, I.D. Blum, C.I. Wu, T.P. Hogan, D.N. Seidman, V.P. Dravid, and M.G. Kanatzidis, Nature 489, 414 (2012).

    Article  Google Scholar 

  13. J.Q. He, I.D. Blum, H.-Q. Wang, S.N. Girard, J. Doak, L.-D. Zhao, J.-C. Zheng, G. Casillas, C. Wolverton, M. Jose-Yacaman, D.N. Seidman, M.G. Kanatzidis, and V.P. Dravid, Nano Lett. 12, 5979 (2012).

  14. M.K. Miller, Atom Probe Tomography: Analysis at the Atomic Level (New York: Kluwer Academic/Plenum Publishers, 2000).

    Book  Google Scholar 

  15. A. Cerezo, T.J. Godfrey, S.J. Sijbrandij, G.D.W. Smith, and P.J. Warren, Rev. Sci. Instrum. 69, 49 (1998).

    Article  Google Scholar 

  16. D.N. Seidman, Annu. Rev. Mater. Res. 37, 127 (2007).

    Article  Google Scholar 

  17. G. Da Costa, F. Vurpillot, A. Bostel, M. Bouet, and B. Deconihout, Rev. Sci. Instrum. 76, 013304 (2005).

    Article  Google Scholar 

  18. L.A. Giannuzzi and F.A. Stevie, Micron 30, 197 (1999).

    Article  Google Scholar 

  19. D.J. Larson, D.T. Foord, A.K. Petford-Long, H. Liew, M.G. Blamire, A. Cerezo, and G.D.W. Smith, Ultramicroscopy 79, 287 (1999).

    Article  Google Scholar 

  20. M.K. Miller, K.F. Russell, K. Thompson, R. Alvis, and D.J. Larson, Microsc. Microanal. 13, 428 (2007).

    Article  Google Scholar 

  21. B. Qiu, H. Bao, G.Q. Zhang, Y. Wu, and X.L. Ruan, Comp. Mater. Sci. 53, 278 (2012).

    Article  Google Scholar 

  22. Z.T. Tian, J. Garg, K. Esfarjani, T. Shiga, J. Shiomi, and G. Chen, Phys. Rev. B 85, 184303 (2012).

    Article  Google Scholar 

  23. J. He, M.G. Kanatzidis, and V.P. Dravid, Mater. Today 16, 166 (2013).

    Article  Google Scholar 

  24. J. He, J. Androulakis, M.G. Kanatzidis, and V.P. Dravid, Nano Lett. 12, 343 (2012).

    Article  Google Scholar 

  25. I.D. Blum, D. Isheim, D.N. Seidman, J.Q. He, J. Androulakis, K. Biswas, V.P. Dravid, and M.G. Kanatzidis, J. Electron. Mater. 41, 1583 (2012).

    Article  Google Scholar 

  26. S.N. Girard, J.Q. He, X.Y. Zhou, D. Shoemaker, C.M. Jaworski, C. Uher, V.P. Dravid, J.P. Heremans, and M.G. Kanatzidis, J. Am. Chem. Soc. 133, 16588 (2011).

    Article  Google Scholar 

  27. S.A. Dregia and P. Wynblatt, Acta Metall. Mater. 39, 771 (1991).

    Article  Google Scholar 

  28. A.P. Sutton and R.W. Balluffi, Interfaces in Crystalline Materials (Oxford: Clarendon Press, 1995).

    Google Scholar 

  29. J.W. Cahn, Thermodynamics of Solid and Fluid Surfaces (Metals Park: American Society for Metals, Materials Science Division, 1979).

    Google Scholar 

Download references

Acknowledgements

This research was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, through the Energy Frontier Research Center “Revolutionary Materials for Solid State Energy Conversion”, Award Number DE-SC0001054. The three-dimensional atom-probe tomographic measurements were performed at the Northwestern University Center for Atom-Probe Tomography (NUCAPT). The local-electrode atom-probe (LEAP) tomograph was purchased and upgraded with funding from NSF-MRI (DMR-0420532) and ONR-DURIP (N00014-0400798, N00014-0610539, N00014-0910781) grants. We also gratefully acknowledge the Initiative for Sustainability and Energy at Northwestern (ISEN) for grants to upgrade the capabilities of NUCAPT. The microscopy and analysis was performed at the Electron Probe Instrumentation Center (EPIC) facility of the Northwestern University’s Atomic and Nanoscale Characterization Experimental (NUANCE) Center. The NUANCE Center is partially supported by NSF-MRSEC, NU-IIN, State of Illinois and Northwestern University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David N. Seidman.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kim, YJ., Blum, I.D., He, J. et al. Three-Dimensional Atom-Probe Tomographic Analyses of Lead-Telluride Based Thermoelectric Materials. JOM 66, 2288–2297 (2014). https://doi.org/10.1007/s11837-014-1155-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-014-1155-0

Keywords

  • PbTe
  • Thermoelectric Material
  • Pulse Repetition Rate
  • Scan Transmission Electron Microscopy
  • Interfacial Free Energy