, Volume 66, Issue 11, pp 2288–2297 | Cite as

Three-Dimensional Atom-Probe Tomographic Analyses of Lead-Telluride Based Thermoelectric Materials

  • Yoon-Jun Kim
  • Ivan D. Blum
  • Jiaqing He
  • Mercouri G. Kanatzidis
  • Vinayak P. Dravid
  • David N. Seidman


Precipitates in bulk p-type thermoelectric materials, PbTe-SrTe and PbTe-PbS, are studied using three-dimensional (3-D) atom-probe tomography (APT). APT is capable of characterizing chemically materials in 3-D with subnano-scale spatial resolution on an atom-by-atom basis, which enables us to characterize secondary phases in the PbTe matrix as well as the dopant distributions at different imperfections. We demonstrate that APT provides accurate information about the compositions and morphologies of nanoprecipitates. In the PbTe-SrTe system, different morphology of precipitates is observed and the SrTe composition is confirmed. Also, segregation of Na dopants at mesoscale imperfections, dislocations and grain boundaries, and at matrix/precipitate interfaces is observed. In the PbTe-PbS system, PbS precipitates are observed. The PbS precipitates exhibit faceting, and have a morphology that depends on the bulk Na concentration. A predominance of {100} faceted precipitates is observed for 2 mol.% Na. Using 3-D APT, we demonstrate that Na segregation at matrix/precipitate interfaces is most likely responsible for the change in their morphologies, which occurs by reducing the interfacial free energy of {100} facets.


PbTe Thermoelectric Material Pulse Repetition Rate Scan Transmission Electron Microscopy Interfacial Free Energy 



This research was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, through the Energy Frontier Research Center “Revolutionary Materials for Solid State Energy Conversion”, Award Number DE-SC0001054. The three-dimensional atom-probe tomographic measurements were performed at the Northwestern University Center for Atom-Probe Tomography (NUCAPT). The local-electrode atom-probe (LEAP) tomograph was purchased and upgraded with funding from NSF-MRI (DMR-0420532) and ONR-DURIP (N00014-0400798, N00014-0610539, N00014-0910781) grants. We also gratefully acknowledge the Initiative for Sustainability and Energy at Northwestern (ISEN) for grants to upgrade the capabilities of NUCAPT. The microscopy and analysis was performed at the Electron Probe Instrumentation Center (EPIC) facility of the Northwestern University’s Atomic and Nanoscale Characterization Experimental (NUANCE) Center. The NUANCE Center is partially supported by NSF-MRSEC, NU-IIN, State of Illinois and Northwestern University.


  1. 1.
    D.M. Rowe, CRC Handbook of Thermoelectrics: Macro to Nano (Boca Raton, FL: CRC Press, 2006).Google Scholar
  2. 2.
    T. Tritt, Recent Trends in Thermoelectric Materials Research, Part One (San Diego: Academic Press, 2000).Google Scholar
  3. 3.
    T. Tritt, Recent Trends in Thermoelectric Materials Research, Part Two (San Diego: Academic Press, 2000).Google Scholar
  4. 4.
    T. Tritt, Recent Trends in Thermoelectric Materials Research: Part Three (San Diego: Academic Press, 2001).Google Scholar
  5. 5.
    G.J. Snyder and E.S. Toberer, Nat. Mater. 7, 105 (2008).CrossRefGoogle Scholar
  6. 6.
    M.G. Kanatzidis, Chem. Mater. 22, 648 (2009).CrossRefGoogle Scholar
  7. 7.
    K. Biswas, J.Q. He, Q.C. Zhang, G.Y. Wang, C. Uher, V.P. Dravid, and M.G. Kanatzidis, Nat. Chem. 3, 160 (2011).CrossRefGoogle Scholar
  8. 8.
    D.N. Seidman and K. Stiller, MRS Bull. 34, 717 (2009).CrossRefGoogle Scholar
  9. 9.
    D. Blavette, A. Bostel, J.M. Sarrau, B. Deconihout, and A. Menand, Nature 363, 432 (1993).CrossRefGoogle Scholar
  10. 10.
    T.F. Kelly and D.J. Larson, Annu. Rev. Mater. Res. 42, 1 (2012).CrossRefGoogle Scholar
  11. 11.
    J.L. Lensch-Falk, J.D. Sugar, M.A. Hekmaty, and D.L. Medlin, J. Alloy. Compd. 504, 37 (2010).CrossRefGoogle Scholar
  12. 12.
    K. Biswas, J.Q. He, I.D. Blum, C.I. Wu, T.P. Hogan, D.N. Seidman, V.P. Dravid, and M.G. Kanatzidis, Nature 489, 414 (2012).CrossRefGoogle Scholar
  13. 13.
    J.Q. He, I.D. Blum, H.-Q. Wang, S.N. Girard, J. Doak, L.-D. Zhao, J.-C. Zheng, G. Casillas, C. Wolverton, M. Jose-Yacaman, D.N. Seidman, M.G. Kanatzidis, and V.P. Dravid, Nano Lett. 12, 5979 (2012).Google Scholar
  14. 14.
    M.K. Miller, Atom Probe Tomography: Analysis at the Atomic Level (New York: Kluwer Academic/Plenum Publishers, 2000).CrossRefGoogle Scholar
  15. 15.
    A. Cerezo, T.J. Godfrey, S.J. Sijbrandij, G.D.W. Smith, and P.J. Warren, Rev. Sci. Instrum. 69, 49 (1998).CrossRefGoogle Scholar
  16. 16.
    D.N. Seidman, Annu. Rev. Mater. Res. 37, 127 (2007).CrossRefGoogle Scholar
  17. 17.
    G. Da Costa, F. Vurpillot, A. Bostel, M. Bouet, and B. Deconihout, Rev. Sci. Instrum. 76, 013304 (2005).CrossRefGoogle Scholar
  18. 18.
    L.A. Giannuzzi and F.A. Stevie, Micron 30, 197 (1999).CrossRefGoogle Scholar
  19. 19.
    D.J. Larson, D.T. Foord, A.K. Petford-Long, H. Liew, M.G. Blamire, A. Cerezo, and G.D.W. Smith, Ultramicroscopy 79, 287 (1999).CrossRefGoogle Scholar
  20. 20.
    M.K. Miller, K.F. Russell, K. Thompson, R. Alvis, and D.J. Larson, Microsc. Microanal. 13, 428 (2007).CrossRefGoogle Scholar
  21. 21.
    B. Qiu, H. Bao, G.Q. Zhang, Y. Wu, and X.L. Ruan, Comp. Mater. Sci. 53, 278 (2012).CrossRefGoogle Scholar
  22. 22.
    Z.T. Tian, J. Garg, K. Esfarjani, T. Shiga, J. Shiomi, and G. Chen, Phys. Rev. B 85, 184303 (2012).CrossRefGoogle Scholar
  23. 23.
    J. He, M.G. Kanatzidis, and V.P. Dravid, Mater. Today 16, 166 (2013).CrossRefGoogle Scholar
  24. 24.
    J. He, J. Androulakis, M.G. Kanatzidis, and V.P. Dravid, Nano Lett. 12, 343 (2012).CrossRefGoogle Scholar
  25. 25.
    I.D. Blum, D. Isheim, D.N. Seidman, J.Q. He, J. Androulakis, K. Biswas, V.P. Dravid, and M.G. Kanatzidis, J. Electron. Mater. 41, 1583 (2012).CrossRefGoogle Scholar
  26. 26.
    S.N. Girard, J.Q. He, X.Y. Zhou, D. Shoemaker, C.M. Jaworski, C. Uher, V.P. Dravid, J.P. Heremans, and M.G. Kanatzidis, J. Am. Chem. Soc. 133, 16588 (2011).CrossRefGoogle Scholar
  27. 27.
    S.A. Dregia and P. Wynblatt, Acta Metall. Mater. 39, 771 (1991).CrossRefGoogle Scholar
  28. 28.
    A.P. Sutton and R.W. Balluffi, Interfaces in Crystalline Materials (Oxford: Clarendon Press, 1995).Google Scholar
  29. 29.
    J.W. Cahn, Thermodynamics of Solid and Fluid Surfaces (Metals Park: American Society for Metals, Materials Science Division, 1979).Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2014

Authors and Affiliations

  • Yoon-Jun Kim
    • 1
  • Ivan D. Blum
    • 1
    • 4
  • Jiaqing He
    • 1
    • 5
  • Mercouri G. Kanatzidis
    • 2
  • Vinayak P. Dravid
    • 1
  • David N. Seidman
    • 1
    • 3
  1. 1.Department of Materials Science and EngineeringNorthwestern UniversityEvanstonUSA
  2. 2.Department of ChemistryNorthwestern UniversityEvanstonUSA
  3. 3.Northwestern Center for Atom-Probe TomographyEvanstonUSA
  4. 4.Groupe de Physique des Matériaux, UMR CNRS 6634Normandie University, University of Rouen and INSA RouenSt. Etienne du RouvrayFrance
  5. 5.Department of PhysicsSouth University of Science and Technology of ChinaShenzhenPeople’s Republic of China

Personalised recommendations