Skip to main content
Log in

Microstructural Developments and Tensile Properties of Lean Fe-Mn-Al-C Lightweight Steels

  • Published:
JOM Aims and scope Submit manuscript

Abstract

Concepts of Fe-Al-Mn-C-based lightweight steels are fairly simple, but primary metallurgical issues are complicated. In this study, recent studies on lean-composition lightweight steels were reviewed, summarized, and emphasized by their microstructural development and mechanical properties. The lightweight steels containing a low-density element of Al were designed by thermodynamic calculation and were manufactured by conventional industrial processes. Their microstructures consisted of various secondary phases as κ-carbide, martensite, and austenite in the ferrite matrix according to manufacturing and annealing procedures. The solidification microstructure containing segregations of C, Mn, and Al produced a banded structure during the hot rolling. The (ferrite + austenite) duplex microstructure was formed after the annealing, and the austenite was retained at room temperature. It was because the thermal stability of austenite nucleated from fine κ-carbide was quite high due to fine grain size of austenite. Because these lightweight steels have outstanding properties of strength and ductility as well as reduced density, they give a promise for automotive applications requiring excellent properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. M. Ritzkowski and R. Stegmann, Int. J. Greenh. Gas Control 1, 281 (2007).

    Article  Google Scholar 

  2. K. Kaygusuz, Renew. Sustain. Energy Rev. 13, 253 (2009).

    Article  Google Scholar 

  3. K. Hashimoto, M. Yamasaki, K. Fujimura, T. Matsui, K. Izumiya, M. Komori, A.A. El-Moneim, E. Akiyama, H. Habazaki, N. Kumagai, A. Kawashima, and K. Asami, Mater. Sci. Eng. A 267, 200 (1999).

    Article  Google Scholar 

  4. P.J. Jacques, Curr. Opin. Solid State Mater. Sci. 8, 259 (2004).

    Article  Google Scholar 

  5. S. Zaefferer, J. Ohlert, and W. Bleck, Acta Mater. 52, 2765 (2004).

    Article  Google Scholar 

  6. I.B. Timokhina, P.D. Hodgson, and E.V. Pereloma, Metall. Mater. Trans. A 35A, 2331 (2004).

    Article  Google Scholar 

  7. D.K. Matlock and J.G. Speer, Mater. Manuf. Processes 25, 7 (2010).

    Article  Google Scholar 

  8. H. Kim, D.-W. Suh, and N.J. Kim, Sci. Technol. Adv. Mater. 14, 1 (2013).

    Article  Google Scholar 

  9. L. Falat, A. Schneider, G. Sauthoff, and G. Frommeyer, Intermetallics 13, 1256 (2005).

    Article  Google Scholar 

  10. R. Rana, C. Liu, and R.K. Ray, Scripta Mater. 68, 354 (2013).

    Article  Google Scholar 

  11. D.-W. Suh, S.-J. Park, T.-H. Lee, C.S. Oh, and S.J. Kim, Metall. Mater. Trans. A 41, 397 (2010).

    Article  Google Scholar 

  12. S.-J. Park, B. Hwang, K.H. Lee, T.-H. Lee, D.-W. Suh, and H.N. Han, Scripta Mater. 68, 365 (2012).

    Article  Google Scholar 

  13. K. Choi, C.H. Seo, H. Lee, S.K. Kim, J.H. Kwak, K.G. Chin, K.T. Park, and N.J. Kim, Scripta Mater. 63, 1028 (2010).

    Article  Google Scholar 

  14. G. Frommeyer, U. Brüx, and P. Neumann, ISIJ Int. 43, 438 (2003).

    Article  Google Scholar 

  15. C.H. Seo, K.H. Kwon, K. Choi, K.H. Kim, J.H. Kwak, S. Lee, and N.J. Kim, Scripta Mater. 66, 519 (2012).

    Article  Google Scholar 

  16. H. Springer and D. Raabe, Acta Mater. 60, 4950 (2012).

    Article  Google Scholar 

  17. R.G. Baligidad, U. Prakash, and A. Radhakrishna, Scripta Mater. 36, 667 (1997).

    Article  Google Scholar 

  18. K.-T. Park, Scripta Mater. 68, 375 (2013).

    Article  Google Scholar 

  19. J.-E. Jin and Y.-K. Lee, Acta Mater. 60, 1680 (2012).

    Article  Google Scholar 

  20. H.-J. Lee, S.S. Sohn, S. Lee, J.-H. Kwak, and B.-J. Lee, Scripta Mater. 68, 339 (2013).

    Article  Google Scholar 

  21. B. Sundman, B. Jansson, and J.-O. Andersson, CALPHAD 9, 153 (1985).

    Article  Google Scholar 

  22. TCFE2000: The Thermo-Calc Steels Database, upgraded by B.-J. Lee, B. Sundman at KTH, KTH, Stockholm, 1999.

  23. K.-G. Chin, H.-J. Lee, J.-H. Kwak, J.-Y. Kang, and B.-J. Lee, J. Alloy Compd. 505, 217 (2010).

    Article  Google Scholar 

  24. A. Piñol-Juez, A. Iza-mendia, and I. Gutiérrez, Metall. Mater. Trans. A 31A, 1671 (2000).

    Article  Google Scholar 

  25. N. Suutala, T. Takalo, and T. Moisio, Metall. Trans. A 11A, 717 (1980).

    Article  Google Scholar 

  26. S. Atamert and J.E. King, Acta Metall. Mater. 39, 273 (1991).

    Article  Google Scholar 

  27. S.Y. Shin, H. Lee, S.Y. Han, C.-H. Seo, K. Choi, S. Lee, N.J. Kim, J.-H. Kwak, and K.-G. Chin, Metall. Mater. Trans. A 41A, 138 (2010).

    Article  Google Scholar 

  28. C.Y. Chao and T.F. Liu, Metall. Trans. A 23A, 1957 (1993).

    Article  Google Scholar 

  29. P. Kratochvíl, Intermetallics 17, 39 (2009).

    Article  Google Scholar 

  30. J.-B. Seol, D. Raabe, P. Choi, H.-S. Park, J.-H. Kwak, and C.-G. Park, Scripta Mater. 68, 348 (2013).

    Article  Google Scholar 

  31. W.K. Choo, J.H. Kim, and J.C. Yoon, Acta Mater. 45, 4877 (1997).

    Article  Google Scholar 

  32. K. Ishida, H. Ohtani, N. Satoh, R. Kainuma, and T. Nishizawa, ISIJ Int. 30, 680 (1990).

    Article  Google Scholar 

  33. Y. Kimura, K. Handa, K. Hayashi, and Y. Mishima, Intermeallics 12, 607 (2004).

    Article  Google Scholar 

  34. D.C. van Aken, Missouri University of Science and Technology, Private Communication (2012)

  35. M.R. Berrahmoune, S. Berveiller, K. Inal, A. Moulin, and E. Patoor, Mater. Sci. Eng. A 378, 304 (2004).

    Article  Google Scholar 

  36. S. Takaki, K. Fukunaga, J. Syarif, and T. Tsuchiyama, Mater. Trans. 45, 2245 (2004).

    Article  Google Scholar 

  37. Y.-S. Jung, Y.-K. Lee, D.K. Matlock, and M.C. Mataya, Metall. Mater. Int. 17, 553 (2011).

    Article  Google Scholar 

  38. J. Mahieu, J. Maki, B.C. De Cooman, and S. Claessens, Metall. Mater. Trans. A 33A, 2573 (2002).

    Article  Google Scholar 

  39. E. Jimenez-Melero, N.H. van Dijk, L. Zhao, J. Sietsma, S.E. Offerman, J.P. Wright, and S. van der Zwaag, Acta Mater. 53, 5439 (2005).

    Article  Google Scholar 

  40. S.S. Sohn, B.-J. Lee, S. Lee, N.J. Kim, and J.-H. Kwak, Acta Mater. 61, 5050 (2013).

    Article  Google Scholar 

  41. M. Calcagnotto, D. Ponge, and D. Raabe, Metall. Mater. Trans. A 43A, 37 (2012).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Ministry of Knowledge Economy under a Grant No. 10031723-2011-21. The authors would like to thank Mr. Hyuk-Joong Lee of POSTECH for his help with the correlation between alloying effects and microstructural developments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J.-H. Kwak.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sohn, S.S., Lee, S., Lee, BJ. et al. Microstructural Developments and Tensile Properties of Lean Fe-Mn-Al-C Lightweight Steels. JOM 66, 1857–1867 (2014). https://doi.org/10.1007/s11837-014-1128-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-014-1128-3

Keywords

Navigation