Skip to main content
Log in

New TiC/Co1.5CrFeNi1.5Ti0.5 Cermet with Slow TiC Coarsening During Sintering

  • Published:
JOM Aims and scope Submit manuscript

Abstract

New TiC/Co1.5CrFeNi1.5Ti0.5 cermet was developed by exploiting the advantages of the high-entropy alloy (HEA) binder. A much finer grain structure and thus improved hardness–toughness combination were obtained as compared with two traditional binders, Ni and Ni13Mo7. From the coarsening behavior of TiC grains, the coarsening process of TiC in these three binders is diffusion-controlled. The activation energy of TiC + 20%Co1.5CrFeNi1.5Ti0.5 is the highest and that of TiC + 20%Ni is the lowest. The high activation energy of the Co1.5CrFeNi1.5Ti0.5 binder was attributable to its high content of carbon-strong-binding elements, Cr and Ti, and cooperative diffusion and higher packing density of multiple different-sized atoms. Low diffusion coefficient, low surface energy of TiC grains, and low solubility of Ti in the HEA liquid explain the slow coarsening of TiC grains. This study demonstrates that Co1.5CrFeNi1.5Ti0.5 is an excellent HEA binder for TiC cermets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. B. Wittmann, W.D. Schubert, and B. Lux, Int. J. Refract. Met. Hard Mater. 20, 51 (2002).

    Article  Google Scholar 

  2. D.F. Carroll, Int. J. Refract. Met. Hard Mater. 17, 123 (1999).

    Article  Google Scholar 

  3. I.M. Stephenson and J. White, Trans. Br. Ceram. Soc. 66, 443 (1967).

    Google Scholar 

  4. K.W. Kay, J. Am. Ceram. Soc. 51, 373 (1967).

    Google Scholar 

  5. N.C. Kothari, J. Less-Common Met. 13, 457 (1967).

    Article  Google Scholar 

  6. H. Fischmeister, A. Kannappan, L.H. Yi, and E. Navara, Phys. Sinter. 1, 1 (1969).

    Google Scholar 

  7. R. Warren, J. Mater. Sci. 3, 471 (1968).

    Article  Google Scholar 

  8. W. May, J. Mater. Sci. 6, 1209 (1971).

    Article  Google Scholar 

  9. H.E. Exner, E.S. Marta, and G. Petzow, Modern Developments in Powder Metallurgy: Process, Vol. 4 (New York, NY: Plenum Press, 1971), p. 315.

    Google Scholar 

  10. R. Warren, J. Mater. Sci. 7, 1434 (1972).

    Article  MathSciNet  Google Scholar 

  11. I.M. Lifshitz and V.V. Slyozov, J. Phys. Chem. Solids 19, 35 (1961).

    Article  Google Scholar 

  12. Z.C. Wagner, Electrochemistry 65, 581 (1961).

    Google Scholar 

  13. M. Hillert, Phase Equilibria, Phase Diagrams and Phase Transformations: Their Thermodynamic Basis (New York, NY: Cambridge University Press, 1998), p. 149.

    MATH  Google Scholar 

  14. H. Ye, V. Pujar, and N.P. Padture, Acta Mater. 47, 481 (1999).

    Article  Google Scholar 

  15. H. Moon, B. Kim, and S.L. Kang, Acta Mater. 48, 1293 (2001).

    Article  Google Scholar 

  16. K. Oh, J. Jun, and D. Kim, J. Am. Ceram. Soc. 83, 3117 (2000).

    Article  Google Scholar 

  17. D.A. Porter and K.E. Easterling, Phase Transformation in Metals and Alloys, 2nd ed. (London: Chapman & Hall, 1992), pp. 168–180.

    Book  Google Scholar 

  18. W.D. Schubert, A. Bock, and B. Lux, Int. J. Refract. Met. Hard Mater. 13, 281 (1995).

    Article  Google Scholar 

  19. V.A. Tracey, Int. J. Refract. Met. Hard Mater. 11, 137 (1992).

    Article  Google Scholar 

  20. J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Tsau, and S.Y. Chang, Adv. Eng. Mater. 6, 299 (2004).

    Article  Google Scholar 

  21. J.W. Yeh, J. Met. 65, 1759 (2013).

    Google Scholar 

  22. Y. Zhang, T.T. Zuo, Z. Tang, M.C. Gao, K.A. Dahmen, P.K. Liaw, and Z.P. Lu, Prog. Mater. Sci. 61, 1 (2014).

    Article  Google Scholar 

  23. M.H. Tsai and J.W. Yeh, Mater. Res. Lett. 1, 207 (2014).

    Article  Google Scholar 

  24. M.C. Gao and D.E. Alman, Entropy 15, 4504 (2013).

    Article  Google Scholar 

  25. Y. Zhang, et al., Prog. Mater Sci. 61, 1 (2014).

    Article  Google Scholar 

  26. C.S. Chen, C.C. Yang, H.Y. Chai, J.W. Yeh, and J.L.H. Chau, Int. J. Refract. Met. Hard Mater. 43, 200 (2014).

    Article  Google Scholar 

  27. Y.L. Chou, J.W. Yeh, and H.C. Shih, Corrosion 67, 085002 (2011).

    Google Scholar 

  28. M.H. Chuang, M.H. Tsai, W.R. Wang, S.J. Lin, and J.W. Yeh, Acta Mater. 59, 6308 (2011).

    Article  Google Scholar 

  29. W.D. Schubert, H. Neumeister, G. Kinger, and B. Lux, Int. J. Refract. Met. Mard Mater. 16, 133 (1998).

    Article  Google Scholar 

  30. R. Koc, C. Meng, and G.A. Swift, J. Mater. Sci. 35, 3131 (2000).

    Article  Google Scholar 

  31. H.O. Pierson, Handbook of Refractory Carbides and Nitrides (Upper Saddle River, NJ: Noyes Publications, 1996), p. 69.

    Google Scholar 

  32. D.A. Porter and K.E. Easterling, Phase Transformation in Metals and Alloys, 2nd ed. (London: Chapman & Hall, 1992), pp. 314–317.

    Book  Google Scholar 

  33. I. Konyashin, S. Hlawatschek, B. Ries, F. Lachmann, F. Dorn, A. Sologubenko, and T. Weirich, Int. J. Refract. Met. Mard Mater. 27, 234 (2009).

    Article  Google Scholar 

  34. K.Y. Tsai, M.H. Tsai, and J.W. Yeh, Acta Mater. 61, 4887 (2013).

    Article  Google Scholar 

  35. A. Inoue, Acta Mater. 48, 279 (2000).

    Article  Google Scholar 

Download references

Acknowledgements

The authors are pleased to acknowledge the financial support for this research by the Ministry of Science and Technology of Taiwan under Grant No. MOST 103-2218-E-007-011.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jien-Wei Yeh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, CM., Tsai, CW., Huang, SM. et al. New TiC/Co1.5CrFeNi1.5Ti0.5 Cermet with Slow TiC Coarsening During Sintering. JOM 66, 2050–2056 (2014). https://doi.org/10.1007/s11837-014-1095-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-014-1095-8

Keywords

Navigation