Skip to main content

Advertisement

Log in

Review of Innovative Energy Savings Technology for the Electric Arc Furnace

  • Published:
JOM Aims and scope Submit manuscript

Abstract

A review of the energy innovations for the electric arc furnace (EAF) steelmaking route is discussed. Preheating of scrap using vertical and horizontal shafts that have been commercially successful in lowering the energy consumption to as much as 90 kWh/t reaching almost the operational limit to heating input scrap materials into the EAF is discussed. Bucket-type and twin-shell preheaters have also shown to be effective in lowering the overall power consumption by 60 kWh/t, but these have been less effective than the vertical shaft-type preheaters. Beyond the scrap preheating technologies, the utilization of waste heat of the slags from the laboratory scale to the pilot scale has shown possible implementation of a granulation and subsequent heat exchange with forced air for energy recovery from the hot slags. Novel techniques to increase metal recovery have shown that laboratory-scale testing of localized Fe concentration into the primary spinel crystals was possible allowing the separation of an Fe-rich crystal from an Fe-depleted amorphous phase. A possible future process for converting the thermal energy of the CO/CO2 off-gases from the EAF into chemical energy was introduced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. World Steel Association, Crude Steel Production (2012). http://www.worldsteel.org/statistics/crude-steel-production.html. Accessed 30 May 2014.

  2. World Steel Dynamics, World Steel Dynamics Report-Scrap Outlook: A New Bundle (2012). http://www.worldsteeldynamics.com/pg/reports. Accessed 15 Sept 2013.

  3. C.P. Manning and R.J. Fruehan, JOM 53(10), 36 (2001).

    Article  Google Scholar 

  4. Y.N. Toulouevski and I.Y. Zinurov, Innovation in Electric Arc Furnaces (New York: Springer, 2010), pp. 1–23, 81–92.

  5. J.P. Birat, Revue de Métall. 97, 1347 (2000).

    Article  Google Scholar 

  6. OECD, OECD Environmental Outlook to 2030 (Paris: OECD Publishing, 2008).

    Book  Google Scholar 

  7. L. Mathiesen and O. Maestad, Energy J. 25, 91 (2004).

    Article  Google Scholar 

  8. A.W. Wyckoffa and J.M. Roop, Energy Policy 22, 187 (1994).

    Article  Google Scholar 

  9. S.H. Anderson, G.E. Metius, and J.M. McClelland, 60th Electric Furnace Conference Proceedings (Warrendale, PA: ISS, 2002), pp. 175–191.

  10. M. Atkinson and R. Kolarik, AISI Steel Industry Technology Roadmap Report (Oak Ridge, TN: American Iron and Steel Institute, 2001), pp. 23–28.

    Google Scholar 

  11. J.P. Birat, Ironmak. Steelmak. 28, 152 (2001).

    Article  Google Scholar 

  12. N.A. Godinskii, N.N. Kushnarev, D.S. Yakhshuk, V.I. Kotenev, and E.Y. Barsukova, Metallurgist 47, 16 (2003).

    Article  Google Scholar 

  13. C.W. Forsberg, Int. J. Hydrogen Energy 32, 431 (2007).

    Article  Google Scholar 

  14. K.S. Yoshiki-Gravelsins, J.M. Toguri, and R.T.C. Choo, JOM 45(5), 15 (1993).

    Article  Google Scholar 

  15. O. Ostrovski and G. Zhang, AIChE J. 52, 300 (2006).

    Article  Google Scholar 

  16. T. Emi and S. Seetharaman, Scand. J. Metall. 29, 185 (2000).

    Article  Google Scholar 

  17. G.H. Geiger, Proc. International Symposium on Global Environment and the Iron and Steel Industry (Beijing, China: CMS, 1998), pp. 191–196.

  18. D. Yanez, M.A. Pedroza, J. Ehle, and H. Knapp, Proc. 6th European Electric Steelmaking Conference (Dusseldorf, Germany: Verlag Stahleisen mbH, 1999), pp. 24–28.

  19. I.A. Madugu and M. Abdulwahab, Aust. J. Basic Appl. Sci. 2, 835 (2008).

    Google Scholar 

  20. T. Wang, M. Kawakami, K. Mori, and S.H. Shahidan, Mater. Sci. Forum 449, 329 (2004).

    Article  Google Scholar 

  21. H. Ludwig, SEAISI Q. 30, 16 (2001).

    Google Scholar 

  22. S.S. Baker, A.M.W. Briggs, P.J. Lewis, D. Capodilupo, E. Repetto, S. Gonthier, Y. Zbaczyniak, B. Kleimt, S. Kohle, M. Knoop, G. Mosel, and P.G. Oberhauser, European Commission ReportEcological and Economical EAF Steelmaking EUR 19480, 2001, pp. 1–442.

  23. Y. Fujiwara, Mater. World 9, 17 (2001).

    Google Scholar 

  24. R. Yamaguchi, H. Mizukami, T. Maki, and N. Ao, 58th Electric Furnace Conference Proc. (Warrendale, PA: ISS, 2000), pp. 325–336.

  25. H. Mizukami, R. Yamaguchi, T. Nakayama, T. Maki, N. Ao, and Y. Sato, NKK Tech. Rev. 82, 14 (2000).

    Google Scholar 

  26. T. Sugasawai, H. Kato, and T. Nagai (Paper presented at the 2013 SEASI Conference and Exhibition, Dusit Thani Pattaya, Thailand, 3–6 June 2013).

  27. J. Ehle and G. Fuchs, U.S. patent 5153,894 A (1992).

  28. United States Environmental Protection Agency, Available and Emerging Technologies for Reducing Greenhouse Gas Emissions from the Iron and Steel Industry (Research Triangle Park, NC: U.S. Environmental Protection Agency, Office of Air and Radiation, 2012). http://www.epa.gov/nsr/ghgdocs/refineries.pdf. Accessed 30 May 2014.

  29. M.A. Pedroza, R.G. Gonzalez, and M.A. Herrera, Ironmak. Steelmak. 24, 83 (1997).

    Google Scholar 

  30. M. Haissig and W. Gebert, 56th Electric Furnace Conference Proc. (Warrendale, PA: ISS, 1998), vol. 55, pp. 391–405.

  31. J. de Beer, Potential for Industrial Energy-Efficiency Improvement in the Long Term (Dordrecht: Kluwer Academic Publishers, 2000), pp. 145–147.

    Book  Google Scholar 

  32. A. Villar, J.J. Arribas, and J. Parrondo, Clean Technol. Environ. Policy 14, 29 (2012).

    Article  Google Scholar 

  33. P. Argenta and M.B. Ferri, La Metall. Ital. 1, 41 (2005).

    Google Scholar 

  34. M.H. Adjei-Sarpong, M. Fox, B. Trumble, and J. Powers, Iron Steel Technol. 3, 65 (2006).

    Google Scholar 

  35. C. Giavani, E. Malfa, and V. Battaglia, SEAISI Q. J. 41, 16 (2012).

    Google Scholar 

  36. F. Memoli, M. Guzzon, C. Giavani, M. Zanforlin, and P. Galbiati, Iron Steel Technol. 7, 56 (2010).

    Google Scholar 

  37. J. Tang, M.B. Ferri, and P. Argenta, Ironmak. Steelmak. 32, 191 (2005).

    Article  Google Scholar 

  38. J. Simmons, A. Manenti, and K. Shoop, 60th Electric Furnace Conference Proc. (Warrendale, PA: ISS, 2002), vol. 60, pp. 377–386.

  39. J.A. Vallomy, Scand. J. Metall. 28, 277 (1999).

    Google Scholar 

  40. A. Michielan, A. Fior, and G. Lavaroni, 6th European Electric Steelmaking Conf. Proc. (Warrendale, PA: ISS, 1999), pp. 78–83.

  41. K.E. Sewald, 44th Electric Furnace 957 Conf. Proc. (Warrendale, PA: ISS, 1987), pp. 243–250.

  42. A.B. Steblov, A.V. Mateiko, and É.A. Steblova, Metallurgist 50, 571 (2006).

    Article  Google Scholar 

  43. E. Worrell, L. Price, and N. Martin, Energy 26, 513 (2001).

    Article  Google Scholar 

  44. V. Portanova, JOM 36, 37 (1984).

    Article  Google Scholar 

  45. A. Michielan and A. Fior, 6th European Electric Steelmaking Conf. Proc. (Warrendale, PA: ISS, 1999), pp. 204–209.

  46. D. Neuschutz, High Temp. Mater. Process. 4, 309 (2000).

    Google Scholar 

  47. M. Gojic, Metalurgija 43, 163 (2004).

    Google Scholar 

  48. B. Butcher, B. Laroy, K. Vanover, Y. Krotov, and S. Meyer, Iron Steel Technol. 8, 42 (2011).

    Google Scholar 

  49. H. Trenkler, ABB Rev. 9/10, 18 (1996).

  50. M. Barati, S. Esfahani, and T.A. Utigard, Energy 36, 5440 (2011).

    Article  Google Scholar 

  51. H. Zhang, H. Wang, X. Zhu, Y.-J. Qiu, K. Li, R. Chen, and Q. Liao, Appl. Energy 112, 956 (2013).

    Article  Google Scholar 

  52. P. Berger, Stahl Eisen 50, 1775 (1930).

    Google Scholar 

  53. S.J. Pickering, N. Hay, T.F. Roylance, and G.H. Thomas, Ironmak. Steelmak. 12, 14 (1985).

    Google Scholar 

  54. M. Yoshinaga, K. Fujii, T. Shigematsu, and T. Nakata, Trans. Iron Steel Inst. Jpn. 22, 823 (1982).

    Article  Google Scholar 

  55. J.R. Donald and C.A. Pickles, Proc. 77th Steelmaking Conf. (Warrendale, PA: ISS, 1994), pp. 681–692.

  56. T. Akiyama, K. Oikawa, T. Shimada, E. Kasai, and J.-I. Yagi, ISIJ Int. 40, 286 (2000).

    Article  Google Scholar 

  57. T. Shimada, V. Kochura, T. Akiyama, E. Kasai, and J. Yagi, ISIJ Int. 41, 111 (2001).

    Article  Google Scholar 

  58. F. Sieverding, Steel Times 208, 469 (1980).

    Google Scholar 

  59. J. Ando, T. Nakahar, H. Onous, S. Tchimura, and M. Kondo, Technical Review (Japan: Mitsubishi Heavy Industries, 1985), pp. 136–142.

  60. World Steel Association, World Steel Association Yearbook and Factsheets (2012). http://www.worldsteel.org/Steel. Accessed 30 May 2014.

  61. Verein Deutscher Eisenhuttenleute, Slag Atlas, 2nd ed. (Dusseldorf: Verlag Stahleisen, 1995), p. 597.

    Google Scholar 

  62. M. Susa, K. Nagata, and K.S. Goto, Trans. JIM 29, 133 (1998).

    Google Scholar 

  63. K. Nagata, M. Susa, and K.S. Goto, Tetsu-to-Hagané 69, 1417 (1983).

    Google Scholar 

  64. T. Akiyama, T. Shima, T. Kasai, and J. Yagi, China-Japan International Academic Symposium (2000), pp. 53–65.

  65. D. Xie, Y. Pan, R. Flann, B. Washington, S. Sanetsis, and J. Donnelley, Proc. 1st CSRP Annual Conf. (Melbourne, Australia: CSIRO, 2007), pp. 29–30.

  66. H. Matsuura and F. Tsukihashi, ISIJ Int. 52, 1503 (2012).

    Article  Google Scholar 

  67. N. Maruoka, T. Mizuochi, H. Purwanto, and T. Akiyama, ISIJ Int. 44, 257 (2004).

    Article  Google Scholar 

  68. S.-W. Joo, J.-D. Shin, D.-K. Shin, S.-H. Hong, J.-S. Ki, J.-I. Hwang, and B.-D. You, Korean J. Met. Mater. 50, 753 (2012).

    Google Scholar 

  69. Y.J. Kim and D.J. Min, Steel Res. Int. 83, 852 (2012).

    Article  Google Scholar 

  70. H. Shen, Waste Manag. 23, 933 (2003).

    Article  Google Scholar 

  71. D.M. Proctor, K.A. Fehling, and E.C. Shay, Environ. Sci. Technol. 34, 1576 (2000).

    Article  Google Scholar 

  72. J. Geiseler, Waste Manag. 16, 59 (1996).

    Article  Google Scholar 

  73. S.S. Jung and I. Sohn, Environ. Sci. Technol. 48, 1886 (2014).

    Article  Google Scholar 

  74. S.S. Jung and I. Sohn, Mater. Metall. Trans. B 43B, 1530 (2012).

    Article  Google Scholar 

  75. S.S. Jung and I. Sohn, J. Am. Ceram. Soc. 96, 1309 (2013).

    Article  Google Scholar 

  76. F.J. Weiss, M.A. Goksel, J.L. Coburn, and G.E. Metius, The Recycling of Steel Plant Waste Oxides Using the PTC (Pellet Technology Corporation) Cold Bond Carbon Bearing Pellet Technology. Disposal, Recycling and Recovery of Electric Furnace Exhaust Dust (Pittsburgh, PA: Iron and Steel Society, 1987), p. 115.

Download references

Acknowledgements

This work has been partially supported by the BK21 (Brain Korea 21) PLUS Project in the Division of the Eco-Humantronics Information Materials and Ministry of Trade, Industry, and Energy (2014-11-070).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Il Sohn.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, B., Sohn, I. Review of Innovative Energy Savings Technology for the Electric Arc Furnace. JOM 66, 1581–1594 (2014). https://doi.org/10.1007/s11837-014-1092-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-014-1092-y

Keywords

Navigation