Skip to main content
Log in

Effect of B2O3 on the Structure and Viscous Behavior of Ti-Bearing Blast Furnace Slags

  • Published:
JOM Aims and scope Submit manuscript

Abstract

This study provided a fundamental analysis of the viscous behavior and structure of Ti-bearing blast furnace slags modified by different B2O3 additions with a basicity (CaO/SiO2) range of 0.5–0.9. The viscosity of slag melts was measured by rotating cylinder method, and the results showed that both slag viscosity and apparent activation energy for viscous flow remarkably decreased with B2O3 addition. To connect the viscosity variation of slags to the melt structure, Fourier transformation infrared spectroscopy analysis was performed. The results indicated that B2O3 acted as a typical network forming oxide, which was introduced into the network and existed dominantly as a two-dimensional structure, BO3 triangular. With the increase of B2O3 content, the stretching vibration of BO3 triangular gradually became more pronounced, which resulted in a simpler and less complex structure and caused the decrease of slag viscosity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. L.P. Wang, H. Wang, G. Qi, X.J. Li, Z.Q. Chen, and Y.Q. Dou, Chin. J. Rare Met. 28, 265 (2004).

    Google Scholar 

  2. L. Wen and J.Z. Zhang, J. Iron Steel Res. 23, 1 (2011).

    Google Scholar 

  3. J.W. Ma, Z.T. Sui, and B.C. Chen, Multipurp. Util. Min. Resour. 2, 22 (2000).

    Google Scholar 

  4. Y. Peng, Titanium Ind. Prog. 22, 44 (2005).

    Google Scholar 

  5. W.B. Zhou, C.M. Ke, Q. Zhang, K.N. Zhang, and S.F. Du, Multipurp. Util. Min. Resour. 3, 35 (2007).

    Google Scholar 

  6. M.Y. Wang, L. Zhang, Z.T. Sui, X.W. Wang, and Y.H. He, Ironmaking Steelmaking 36, 388 (2009).

    Article  Google Scholar 

  7. L. Zhang, L.N. Zhang, M.Y. Wang, T.P. Lou, Z.T. Sui, and J.S. Jang, J. Non-Cryst. Solids 352, 123 (2006).

    Article  Google Scholar 

  8. M.Y. Wang, L.N. Zhang, L. Zhang, Z.T. Sui, and G.F. Tu, Trans. Nonferrous Met. Soc. China 16, 421 (2006).

    Article  Google Scholar 

  9. J. Li, Z.T. Zhang, L.L. Liu, W.L. Wang, and X.D. Wang, ISIJ Int. 53, 1696 (2013).

    Article  Google Scholar 

  10. J. Li, Z.T. Zhang, M. Zhang, M. Guo, and X.D. Wang, Steel Res. Int. 82, 607 (2011).

    Article  Google Scholar 

  11. Y.Q. Sun, Z.M. Li, Z.T. Zhang, L.L. Liu, and X.D. Wang, ISIJ Int. 2014, in press.

  12. C. Orrling, (Ph.D. Dissertation, Carnegie Mellon University, Pittsburgh, PA, 2000).

  13. H.M. Wang, G.R. Li, Q.X. Dai, Y.C. Lei, Y.T. Zhao, B. Li, G.M. Shi, and Z.M. Ren, ISIJ Int. 46, 637 (2006).

    Article  Google Scholar 

  14. X. Yu, G.H. Wen, P. Tang, and H. Wang, Ironmaking Steelmaking 36, 623 (2009).

    Article  Google Scholar 

  15. E.F. Riebling, J. Am. Ceram. Soc. 49, 19 (1966).

    Article  Google Scholar 

  16. G. Urbain, F. Millon, and S. Cariset, CR Acad. Sci. Ser. C. 290, 137 (1980).

    Google Scholar 

  17. S. Ren, J.F. Zhang, L.S. Wu, W.J. Liu, Y.N. Bai, X.D. Xing, B.X. Sui, and D.W. Kong, ISIJ Int. 52, 984 (2012).

    Article  Google Scholar 

  18. A.B. Fox, K.C. Mills, D. Lever, C. Bezerra, C. Valadares, I. Unamuno, J.J. Laraudogoitia, and J. Gisby, ISIJ Int. 45, 1051 (2005).

    Article  Google Scholar 

  19. S. Sridhar, K.C. Mills, O.D.C. Afrange, H.P. Lörz, and R. Carli, Ironmaking Steelmaking 27, 238 (2000).

    Article  Google Scholar 

  20. L. McCulloch, J. Am. Chem. Soc. 59, 2650 (1937).

    Article  Google Scholar 

  21. P.B. Macedo and A. Napolitano, J. Chem. Phys. 49, 1887 (1968).

    Article  Google Scholar 

  22. D.B. Dingwell, R. Knoche, S.L. Webb, and M. Pichavant, Am. Mineral. 77, 457 (1992).

    Google Scholar 

  23. R. Ciceo-Lucacel and I. Ardelean, J Non-Cryst Solids 353, 2020 (2007).

    Article  Google Scholar 

  24. G. Padmaja and P. Kistaiah, J. Phys. Chem. A 113, 2397 (2009).

    Article  Google Scholar 

  25. E.I. Kamitsos, M.A. Karakassides, and G.D. Chryssikos, J. Phys. Chem. 91, 1073 (1987).

    Article  Google Scholar 

  26. R.E. Youngman and J.W. Zwanziger, J. Phys. Chem. 100, 16720 (1996).

    Article  Google Scholar 

  27. B.O. Mysen, Am. Mineral. 75, 120 (1990).

    Google Scholar 

  28. P. McMillan, Am. Mineral. 69, 622 (1984).

    Google Scholar 

  29. G.H. Kim and I. Sohn, Metall. Mater. Trans. B 45, 86 (2014).

    Article  Google Scholar 

  30. B.O. Fowler, M. Markovic, and W.E. Brown, Chem. Mater. 5, 1417 (1993).

    Article  Google Scholar 

  31. P. Tarte, Spectrochim. Acta 23, 2127 (1967).

    Article  Google Scholar 

  32. J.H. Park, Metall. Mater. Int. 16, 987 (2010).

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support by the Common Development Fund of Beijing, the National Natural Science Foundation of China (51172003 and 51172001), the National High Technology Research and Development Program of China (863 Program, 2012AA06A114), and Key Projects in the National Science & Technology Pillar Program (2011BAB03B02 and 2013BAC14B07).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zuotai Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Y., Liao, J., Zheng, K. et al. Effect of B2O3 on the Structure and Viscous Behavior of Ti-Bearing Blast Furnace Slags. JOM 66, 2168–2175 (2014). https://doi.org/10.1007/s11837-014-1087-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-014-1087-8

Keywords

Navigation