, Volume 66, Issue 7, pp 1287–1298 | Cite as

Integrated Computational Materials Engineering (ICME) Approach to Design of Novel Microstructures for Ti-Alloys

  • Dong Wang
  • Rongpei Shi
  • Yufeng Zheng
  • Rajarshi Banerjee
  • Hamish L. Fraser
  • Yunzhi WangEmail author


In this overview, we present integrated CAPHAD and phase-field modeling with critical experiments to explore a newly discovered, nonconventional, solid–solid phase transformation pathway based on the so-called pseudo-spinodal mechanism. We show that this new transformation pathway offers a new design strategy for Ti alloys with extremely fine and uniform α + β microstructures that could potentially have highly attractive balances of mechanical properties. To broaden the processing window for such a mechanism to operate, we also explore a different nonconventional transformation pathway that involves precursory phase separation. In addition, the variant selection process during the β → α transformation leading to macrozones is investigated and the results could shed light on how to control processing conditions to avoid or reduce microtexture at both the individual β grain level and the overall polycrystalline sample level.


Pole Figure Integrate Computational Material Engineer Transformation Pathway Crystal Plasticity Model Transformation Texture 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We acknowledge the support of U.S. Air Force Research Laboratory (AFRL contract FA8650-08-C-5226) and the U.S. National Science Foundation (DMR 1006487 to R.B and H.L.F and DMR1008349 to Y.W). The simulations were partially performed on supercomputers at Ohio Supercomputing Center and Arctic Region Supercomputing Center.


  1. 1.
    J.B. Clark and A.J. Mcevily, Acta Metall. Mater. 12, 1359 (1964).CrossRefGoogle Scholar
  2. 2.
    W.F. Miao and D.E. Laughlin, Scr. Mater. 40, 873 (1999).CrossRefGoogle Scholar
  3. 3.
    M.E. Fine, Metall. Trans. A 6, 625 (1975).CrossRefGoogle Scholar
  4. 4.
    Y.J. Li, P. Choi, C. Borchers, S. Westerkamp, S. Goto, D. Raabe, and R. Kirchheim, Acta Mater. 59, 3965 (2011).CrossRefGoogle Scholar
  5. 5.
    Y.J. Li, P. Choi, S. Goto, C. Borchers, D. Raabe, and R. Kirchheim, Acta Mater. 60, 4005 (2012).CrossRefGoogle Scholar
  6. 6.
    H.K.D.H. Bhadeshia and P. Roy, Soc. A Math. Phys. 466, 3 (2010).CrossRefGoogle Scholar
  7. 7.
    A. Lasalmonie and J.L. Strudel, Philos. Mag. 32, 937 (1975).CrossRefGoogle Scholar
  8. 8.
    G. Leverant and B. Kear, Metall. Trans. B 1, 491 (1970).CrossRefGoogle Scholar
  9. 9.
    T. Ahmed and H.J. Rack, Mater. Sci. Eng. A Struct. 243, 206 (1998).CrossRefGoogle Scholar
  10. 10.
    T. Duerij and J.C. Williams, Beta Titanium Alloys in the 80’s: Proceedings of a Symposium (Atlanta, GA: Metallurgical Society of AIME, 1984), p. 19.Google Scholar
  11. 11.
    S. Kar, R. Banerjee, E. Lee, and H.L. Fraser, Solid–Solid Phase Transformation in Inorganic Materials, ed. J.M. Howe (Warrendale, PA: TMS, 2005).Google Scholar
  12. 12.
    R. Shi, V. Dixit, H.L. Fraser, and Y. Wang, Acta Mater. (2014). doi: 10.1016/j.actamat.2014.05.003.
  13. 13.
    D. Banerjee and J.C. Williams, Acta Mater. 61, 844 (2013).CrossRefGoogle Scholar
  14. 14.
    R. Whittaker, K. Fox, and A. Walker, Mater. Sci. Tech. Ser. 26, 676 (2010).CrossRefGoogle Scholar
  15. 15.
    Y. Ni and A.G. Khachaturyan, Nat. Mater. 8, 410 (2009).CrossRefGoogle Scholar
  16. 16.
    A. Boyne, D. Wang, R.P. Shi, Y. Zheng, A. Behera, S. Nag, J.S. Tiley, H.L. Fraser, R. Banerjee, and Y. Wang, Acta Mater. 64, 188 (2014).CrossRefGoogle Scholar
  17. 17.
    S. Nag, Y. Zheng, R.E.A. Williams, A. Devaraj, A. Boyne, Y. Wang, P.C. Collins, G.B. Viswanathan, J.S. Tiley, B.C. Muddle, R. Banerjee, and H.L. Fraser, Acta Mater. 60, 6247 (2012).CrossRefGoogle Scholar
  18. 18.
    W. Soffa and D. Laughlin, Proceedings of an International Conference on Solid to Solid Phase Transformations (Warrendale, PA: The Metallurgical Society of AIME, 1982), p. 159.Google Scholar
  19. 19.
    J.W. Cahn and J.E. Hilliard, J. Chem. Phys. 28, 258 (1958).CrossRefGoogle Scholar
  20. 20.
    L.D. Landau and E. Lifshitz, Phys. Z. Sowjetunion 8, 101 (1935).Google Scholar
  21. 21.
    J.S. Rowlinson, J. Stat. Phys. 20, 197 (1979).CrossRefzbMATHMathSciNetGoogle Scholar
  22. 22.
    J.D. Eshelby, Proc. Roy. Soc. Lond. A Matter. 241 (1957).Google Scholar
  23. 23.
    J.D. Eshelby, Proc. R. Soc. A 252, 561 (1959).CrossRefzbMATHMathSciNetGoogle Scholar
  24. 24.
    A. Khachaturyan, Sov. Phys. Sol. State 8, 2163 (1967).Google Scholar
  25. 25.
    A.G. Khachaturyan, Theory of Structural Transformations in Solids (New York: Wiley, 1983).Google Scholar
  26. 26.
    A.G. Khachaturyan and G.A. Shatalov, Sov. Phys. Sol. State. 11, 118 (1969).Google Scholar
  27. 27.
    W.J. Boettinger, J.A. Warren, C. Beckermann, and A. Karma, Annu. Rev. Mater. Sci. 32, 163 (2002).CrossRefGoogle Scholar
  28. 28.
    L.-Q. Chen, Annu. Rev. Mater. Sci. 32, 113 (2002).CrossRefGoogle Scholar
  29. 29.
    H. Emmerich, The Diffuse Interface Approach in Materials Science: Thermodynamic Concepts and Applications of Phase-Field Models (New York: Springer, 2003).Google Scholar
  30. 30.
    A. Karma, Encyclopedia of Materials: Science and Technology, Vol. 2, ed. K.H.J. Buschow (Oxford, U.K: Elsevier, 2001), p. 6873.CrossRefGoogle Scholar
  31. 31.
    C. Shen and Y. Wang, Handbook of Materials Modeling, ed. S. Yip (New York: Springer, 2005), p. 2117.CrossRefGoogle Scholar
  32. 32.
    Y. Wang, L.Q. Chen, and N. Zhou, Characterization of Materials (New York: Wiley, 2012).Google Scholar
  33. 33.
    Y.U. Wang, Y.M. Jin, and A.G. Khachaturyan, Handbook of Materials Modeling (New York: Springer, 2005), p. 2287.Google Scholar
  34. 34.
    L.-Q. Chen and A.G. Khachaturyan, Acta Metall. Mater. 39, 2533 (1991).CrossRefGoogle Scholar
  35. 35.
    R. Shi, N. Ma, and Y. Wang, Acta Mater. 60, 4172 (2012).CrossRefGoogle Scholar
  36. 36.
    Y. Wang, N. Ma, Q. Chen, F. Zhang, S.L. Chen, and Y.A. Chang, JOM J. Min. Metal. Mater. S. 57, 32 (2005).CrossRefGoogle Scholar
  37. 37.
    Q. Chen, N. Ma, K.S. Wu, and Y.Z. Wang, Scr. Mater. 50, 471 (2004).CrossRefGoogle Scholar
  38. 38.
    R. Shi and Y. Wang, Acta Mater. 61, 6006 (2013).CrossRefGoogle Scholar
  39. 39.
    H.J. Bunge, Texture analysis in materials science–mathematical methods (London, U.K.: Butterworth-Heinemann, 1982).Google Scholar
  40. 40.
    R. Shi and Y. Wang, Acta Mater. (2014, in press).Google Scholar
  41. 41.
    H.L. Lukas, S.G. Fries, and B. Sundman, Computational Thermodynamics: The CALPHAD Method (Cambridge, U.K.: Cambridge University Press, 2007), p. 10.CrossRefGoogle Scholar
  42. 42.
    W. Cao, S.L. Chen, F. Zhang, K. Wu, Y. Yang, Y.A. Chang, R. Schmid-Fetzer, and W.A. Oates, CALPHAD 33, 328 (2009).CrossRefGoogle Scholar
  43. 43.
    C. Shen, J.P. Simmons, and Y. Wang, Acta Mater. 55, 1457 (2007).CrossRefGoogle Scholar
  44. 44.
    Y.J. Liu, L.J. Zhang, and D. Yu, J. Phase Equilib. Diff. 30, 334 (2009).CrossRefGoogle Scholar
  45. 45.
    R.W. Balluffi, S.A. Allen, and W.C. Carter, Kinetics of Materials (Hoboken, NJ: Wiley, 2005).CrossRefGoogle Scholar
  46. 46.
    S.L. Chen, F. Zhang, F.Y. Xie, S. Daniel, X.Y. Yan, Y.A. Chang, R. Schmid-Fetzer, and W.A. Oates, JOM 55, 48 (2003).CrossRefGoogle Scholar
  47. 47.
    J. Shim, C. Oh, and D. Lee, Metall. Mater. Trans. B 27, 955 (1996).CrossRefGoogle Scholar
  48. 48.
  49. 49.
    E.S.K. Menon and H.I. Aaronson, Acta Metall. Mater. 34, 1963 (1986).CrossRefGoogle Scholar
  50. 50.
    D. Wang, Y. Zheng, R. Shi, R. Banerjee, H.L. Fraser, and Y. Wang, Acta Mater. (2014, in press).Google Scholar
  51. 51.
    G. Lutjering and J.C. Williams, Titanium (Engineering Materials and Processes) (Berlin, Germany: Springer, 2007).Google Scholar
  52. 52.
    W.G. Burgers, Physica 1, 561 (1934).CrossRefGoogle Scholar
  53. 53.
    D. Bhattacharyya, G.B. Viswanathan, R. Denkenberger, D. Furrer, and H.L. Fraser, Acta Mater. 51, 4679 (2003).CrossRefGoogle Scholar
  54. 54.
    D. Bhattacharyya, G.B. Viswanathan, and H.L. Fraser, Acta Mater. 55, 6765 (2007).CrossRefGoogle Scholar
  55. 55.
    N. Stanford and P.S. Bate, Acta Mater. 52, 5215 (2004).CrossRefGoogle Scholar
  56. 56.
    S.M.C. van Bohemen, A. Kamp, R.H. Petrov, L.A.I. Kestens, and J. Sietsma, Acta Mater. 56, 5907 (2008).CrossRefGoogle Scholar
  57. 57.
    D. Qiu, R. Shi, D. Zhang, W. Lu, and Y. Wang, Acta Mater. (2014, in press).Google Scholar
  58. 58.
    G.A. Sargent, K.T. Kinsel, A.L. Pilchak, A.A. Salem, and S.L. Semiatin, Metall. Mater. Trans. A 43A, 3570 (2012).CrossRefGoogle Scholar
  59. 59.
    R.A. Winholtz, Encyclopedia of Materials: Science and Technology, ed. K.H.J. Buschow (Oxford, UK: Elsevier, 2001), p. 8148.CrossRefGoogle Scholar
  60. 60.
    L. Zeng and T.R. Bieler, Mater. Sci. Eng. A Struct. 392, 403 (2005).CrossRefGoogle Scholar
  61. 61.
    E. Lee, R. Banerjee, S. Kar, D. Bhattacharyya, and H.L. Fraser, Philos. Mag. 87, 3615 (2007).CrossRefGoogle Scholar
  62. 62.
    Y.U. Wang, Y.M. Jin, and A.G. Khachaturyan, Appl. Phys. Lett. 80, 4513 (2002).CrossRefGoogle Scholar
  63. 63.
    S.L. Semiatin, K.T. Kinsel, A.L. Pilchak, and G.A. Sargent, Metall. Mater. Trans. A 44, 3852 (2013).CrossRefGoogle Scholar
  64. 64.
    J. Gruber, N. Ma, Y. Wang, A.D. Rollett, and G.S. Rohrer, Model. Simul. Mater. Sci. 14, 1189 (2006).CrossRefGoogle Scholar
  65. 65.
    F. Bachmann, R. Hielscher, and H. Schaeben, Solid State Phenom. 160, 63 (2010).CrossRefGoogle Scholar
  66. 66.
    L. Kovarik, R.R. Unocic, J. Li, P. Sarosi, C. Shen, Y. Wang, and M.J. Mills, Prog. Mater. Sci. 54, 839 (2009).CrossRefGoogle Scholar
  67. 67.
    N. Zhou, C. Shen, M.J. Mills, J. Li, and Y. Wang, Acta Mater. 59, 3484 (2011).CrossRefGoogle Scholar
  68. 68.
    V.A. Vorontsov, C. Shen, Y. Wang, D. Dye, and C.M.F. Rae, Acta Mater. 58, 4110 (2010).CrossRefGoogle Scholar
  69. 69.
    N. Zhou, C. Shen, M. Mills, and Y. Wang, Philos. Mag. 90, 405 (2010).CrossRefGoogle Scholar
  70. 70.
    N. Zhou, C. Shen, P.M. Sarosi, M.J. Mills, T. Pollock, and Y. Wang, Mater. Sci. Technol. Ser. 25, 205 (2009).CrossRefGoogle Scholar
  71. 71.
    R.R. Unocic, N. Zhou, L. Kovarik, C. Shen, Y. Wang, and M.J. Mills, Acta Mater. 59, 7325 (2011).CrossRefGoogle Scholar
  72. 72.
    Y. Wang, Y. Jin, and A. Khachaturyan, Dislocation Dynamics: Phase Field (Dordrecht, The Netherlands: Springer, 2005).Google Scholar
  73. 73.
    Y. Wang and J. Li, Acta Mater. 58, 1212 (2010).CrossRefGoogle Scholar
  74. 74.
    C. Shen and Y. Wang, Acta Mater. 52, 683 (2004).CrossRefGoogle Scholar
  75. 75.
    C. Shen and Y. Wang, Acta Mater. 51, 2595 (2003).CrossRefGoogle Scholar
  76. 76.
    S. Chen, J. Li, and Y. Wang, Acta Mater. 74, 125 (2014).Google Scholar
  77. 77.
    A. Arsenlis, D.M. Parks, R. Becker, and V.V. Bulatov, J. Mech. Phys. Solids 52, 1213 (2004).CrossRefzbMATHMathSciNetGoogle Scholar
  78. 78.
    A. Ma, F. Roters, and D. Raabe, Acta Mater. 54, 2169 (2006).CrossRefGoogle Scholar
  79. 79.
    I.J. Beyerlein and C.N. Tome, Int. J. Plastic. 24, 867 (2008).CrossRefzbMATHGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2014

Authors and Affiliations

  • Dong Wang
    • 1
    • 2
  • Rongpei Shi
    • 1
  • Yufeng Zheng
    • 1
  • Rajarshi Banerjee
    • 2
  • Hamish L. Fraser
    • 1
  • Yunzhi Wang
    • 1
    Email author
  1. 1.Department of Materials Science and EngineeringThe Ohio State UniversityColumbusUSA
  2. 2.Department of Materials Science and EngineeringUniversity of North TexasDentonUSA

Personalised recommendations