Skip to main content
Log in

Direct Numerical Simulation of Solid Deformation During Dendritic Solidification

  • Published:
JOM Aims and scope Submit manuscript

Abstract

Deformation of the semisolid mush during solidification is a common phenomenon in metal casting and can lead to defects such as hot tears, macrosegregation, and porosity. The morphology of the solidifying mush, including the shape of the dendrites and the distribution of grain boundaries, plays a key role in determining its mechanical behavior. In the current study, a polycrystalline phase-field model is combined with a material point method stress analysis to numerically simulate the fully coupled dendritic solidification and elasto-viscoplastic deformation behavior of a pure substance in two dimensions. It is shown that solid compressive and shear deformations result in variations in the crystallographic orientation angle within a single dendrite that, in turn, affect the subsequent solidification behavior. Shearing of a dendritic structure occurs primarily in relatively narrow bands near or inside the grain boundaries or the thin junctions between different dendrite arms. The deformations can cause the formation of low-angle tilt grain boundaries inside of individual dendrite arms. In addition, grain boundaries form when different arms of a deformed single dendrite impinge. During compression of a high-solid-fraction dendritic structure, the deformations are limited to a relatively thin layer along the compressing boundary. The compression causes consolidation of this layer into a fully solid structure that consists of numerous subgrains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. J.A. Dantzig and M. Rappaz, Solidification (Lausanne, Switzerland: EPFL Press, 2009).

    Book  MATH  Google Scholar 

  2. M. Flemings, Metall. Mater. Trans. B 22, 269 (1991).

    Article  Google Scholar 

  3. M.G. Pokorny, C.A. Monroe, C. Beckermann, Z. Zhen, and N. Hort, Metall. Mater. Trans. A 41A, 3196 (2010).

    Article  Google Scholar 

  4. A.B. Phillion, S.L. Cockcroft, and P.D. Lee, Acta Mater. 56, 4328 (2008).

    Article  Google Scholar 

  5. D. Fuloria and P.D. Lee, Acta Mater. 57, 5554 (2009).

    Article  Google Scholar 

  6. T. Uehara, M. Fukui, and N. Ohno, J. Cryst. Growth 310, 1331 (2008).

    Article  Google Scholar 

  7. I. Farup, J.M. Drezet, and M. Rappaz, Acta Mater. 49, 1261 (2001).

    Article  Google Scholar 

  8. S. Terzi, Scripta Mater. 61, 449 (2009).

    Article  Google Scholar 

  9. M. Sistaninia, A.B. Phillion, J.M. Drezet, and M. Rappaz, Metall. Mater. Trans. A 42A, 239 (2011).

    Article  Google Scholar 

  10. M. Yamaguchi and C. Beckermann, Acta Mater. 61, 4053 (2013).

    Article  Google Scholar 

  11. M. Yamaguchi and C. Beckermann, Acta Mater. 61, 2268 (2013).

    Article  Google Scholar 

  12. J.A. Warren, R. Kobayashi, A.E. Lobkovsky, and W.C. Carter, Acta Mater. 51, 6035 (2003).

    Article  Google Scholar 

  13. D. Sulsky, Z. Chen, and H.L. Schreyer, Comput. Methods Appl. Mech. Eng. 118, 179 (1994).

    Article  MATH  MathSciNet  Google Scholar 

  14. R. Kobayashi and J.A. Warren, Physica A 356, 127 (2005).

    Article  Google Scholar 

  15. A. Gilmanov and S. Acharya, Int. J. Numer. Methods Fluid 56, 2151 (2008).

    Article  MATH  Google Scholar 

  16. C. Beckermann, H.J. Diepers, I. Steinbach, A. Karma, and X. Tong, J. Comput. Phys. 154, 468 (1999).

    Article  MATH  Google Scholar 

  17. Y. Sun and C. Beckermann, Physica D 198, 281 (2004).

    Article  MATH  MathSciNet  Google Scholar 

  18. Y. Sun and C. Beckermann, Physica D 237, 3089 (2008).

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was financially supported, in part, by NASA under Grant Number NNX10AV35G.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Beckermann.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yamaguchi, M., Beckermann, C. Direct Numerical Simulation of Solid Deformation During Dendritic Solidification. JOM 66, 1431–1438 (2014). https://doi.org/10.1007/s11837-014-1001-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-014-1001-4

Keywords

Navigation