Skip to main content
Log in

Dispersion, Interface, and Alignment of Carbon Nanotubes in Thermomechanically Stretched Polystyrene Matrix

  • Published:
JOM Aims and scope Submit manuscript

Abstract

This article presents a study carried out in relation to the multiwalled nanotube–polymer composite. In the interest of full utilization of the unique properties of the nanotube in the composite, issues addressed include the dispersion of nanotubes, adhesion (contact) at the nanotube–polymer matrix interface, and alignment of nanotubes in the polystyrene (PS) matrix. Good dispersion of nanotubes in the composite was favored by low nanotube content. Nanotubes in the composite were in intimate contact with the PS matrix due to chemical bonding, resulting in the coating of nanotubes by PS. Two forms of nanotube alignment in the composite were observed. The first was a result of sufficiently unidirectional spread of the nanotube clump. The second was a result of preferential orientation of individual nanotubes, which were originally randomly and individually embedded.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. R.F. Service, Science 281, 940 (1998).

    Article  Google Scholar 

  2. P.G. Collins and P. Avouris, Sci. Am. 283, 62 (2000).

    Article  Google Scholar 

  3. Y. Min-Feng, B.S. Files, S. Arepalli, and R.S. Rouff, Phys. Rev. Lett. 84, 5552 (2000).

    Article  Google Scholar 

  4. W.H. Knechtel, G.S. Dusberg, W.J. Blau, E. Hernandez, and A. Rubio, Appl. Phys. Lett. 73, 1961 (1998).

    Article  Google Scholar 

  5. P.G. Collins, M.S. Arnold, and P. Avouris, Science 292, 706 (2001).

    Article  Google Scholar 

  6. H. Stahl, J. Appenzeller, R. Martel, P. Avouris, and B. Lengeler, Phys. Rev. Lett. 85, 5186 (2000).

    Article  Google Scholar 

  7. S. Berber, Y.K. Kwon, and D. Tomanek, Phys. Rev. Lett. 84, 4613 (2000).

    Article  Google Scholar 

  8. M.S. Dresselhaus, G. Dresselhaus, and M. Pimenta, Eur. Phys. J. D 9, 69 (1999).

    Article  Google Scholar 

  9. P. Chen, X. Wu, J. Lin, and K.L. Tan, J. Phys. Chem. B 103, 4559 (1999).

    Article  Google Scholar 

  10. X. Chen, J. Xia, J. Peng, W. Li, and S. Xie, Compos. Sci. Technol. 60, 301 (2000).

    Article  Google Scholar 

  11. J.N. Coleman, S. Curran, A.B. Dalton, A.P. Harvey, B. McCarthy, W. Blau, and R.C. Barklie, Phys. Rev. B 58, R7492 (1998).

    Article  Google Scholar 

  12. V. Lordi and N. Yao, J. Mater. Res. 15, 2770 (2000).

    Article  Google Scholar 

  13. M. Paramsothy (M.Eng. thesis, Nanyang Technological University, Singapore, 2002).

  14. L.S. Schadler, S.C. Giannaris, and P.M. Ajayan, Appl. Phys. Lett. 73, 3842 (1998).

    Article  Google Scholar 

  15. R. Andrews, B. Dickey, D. Qian, B. Knutson, B. Safadi, B. Moore, and F. Derbyshire, Proceedings for Seventh Annual International Conference on Composites Engineering (ICCE/7), Denver, CO, 2–8 July 2000, pp. 39–40.

  16. R. Martel, H.R. Shea, and P. Avouris, J. Phys. Chem. B 103, 7551 (1999).

    Article  Google Scholar 

  17. J. Tersoff and R.S. Ruoff, Phys. Rev. Lett. 73, 676 (1994).

    Article  Google Scholar 

  18. A.H.R. Palser, Phys. Chem. Chem. Phys. 1, 4459 (1999).

    Article  Google Scholar 

  19. R.S. Ruoff, J. Tersoff, D.C. Lorents, S. Subramoney, and B. Chan, Nature 364, 514 (1993).

    Article  Google Scholar 

  20. P.M. Ajayan, O. Stephan, C. Colliex, and D. Trauth, Science 265, 1212 (1994).

    Article  Google Scholar 

  21. H.D. Wagner, O. Lourie, Y. Feldman, and R. Tenne, Appl. Phys. Lett. 72, 188 (1998).

    Article  Google Scholar 

  22. W.D. Callister Jr., Materials Science and Engineering, An Introduction, 3rd ed. (New York, NY: Wiley, 1994), p. 474.

    Google Scholar 

  23. O. Lourie and H.D. Wagner, Compos. Sci. Technol. 59, 975 (1999).

    Article  Google Scholar 

  24. C. Bower, R. Rosen, L. Jin, J. Han, and O. Zhou, Appl. Phys. Lett. 74, 3317 (1999).

    Article  Google Scholar 

  25. Z. Jia, Z. Wang, C. Xu, J. Liang, B. Wei, D. Wu, and S. Zhu, Mater. Sci. Eng. A 271, 395 (1999).

    Article  Google Scholar 

  26. B.H. Chang, Z.Q. Liu, L.F. Sun, D.S. Tang, W.Y. Zhou, G. Wang, L.X. Qian, S.S. Xie, J.H. Fen, and M.X. Wan, J. Low Temp. Phys. 119, 41 (2000).

    Article  Google Scholar 

  27. K. Liao and S. Li, Appl. Phys. Lett. 79, 4225 (2001).

    Article  Google Scholar 

  28. T.W.G. Solomons, Organic Chemistry (New York, NY: Wiley, 1988), p. 605.

    Google Scholar 

  29. H. Hu, K.N. Hui, K.S. Hui, S.K. Lee, and W. Zhou, Colloid Surf. A 396, 177 (2012).

    Article  Google Scholar 

  30. F.A. Carey and R.J. Sundberg, Advanced Organic Chemistry Part B (New York, NY: Springer Science, 2007), p. 473.

    Google Scholar 

  31. L. Jin, C. Bower, and O. Zhou, Appl. Phys. Lett. 73, 1197 (1998).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muralidharan Paramsothy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paramsothy, M. Dispersion, Interface, and Alignment of Carbon Nanotubes in Thermomechanically Stretched Polystyrene Matrix. JOM 66, 960–969 (2014). https://doi.org/10.1007/s11837-014-0871-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-014-0871-9

Keywords

Navigation