, Volume 66, Issue 2, pp 277–290 | Cite as

Dynamic Behavior of a Rare-Earth-Containing Mg Alloy, WE43B-T5, Plate with Comparison to Conventional Alloy, AM30-F

  • Sean Agnew
  • Wilburn Whittington
  • Andrew Oppedal
  • Haitham El Kadiri
  • Matthew Shaeffer
  • K. T. Ramesh
  • Jishnu Bhattacharyya
  • Rick Delorme
  • Bruce Davis


The dynamic behavior of Mg alloys is an area of interest for applications such as crash-sensitive automotive components and armor. The rare-earth element-containing alloy WE43B-T5 has performed well in ballistic testing, so the quasi-static (~10−3 1/s) and dynamic (~600–5000 1/s) mechanical behaviors of two Mg alloys, rolled WE43B-T5 and extruded AM30-F, were investigated using servohydraulic and Kolsky bar testing in uniaxial tension and compression. The yield stress was surprisingly isotropic for WE43B-T5 relative to conventional Mg alloys (including extruded AM30-F). The WE43B plate was textured; however, it was not the typical basal texture of hot-rolled Mg-Al alloys. The effect of strain rate on the yield strength of WE43B-T5 is small and the strain-hardening behavior is only mildly rate sensitive (m = 0.008). The combination of high strength (~300 MPa), moderate ductility (0.07–0.20), and low density yield a material with good specific energy absorption capacity.


Alloy AZ31 Basal Slip Energy Absorption Capacity Alloy WE43 Nonbasal Slip 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



S.R.A. would like to thank McMaster University for sponsoring a visiting faculty appointment during which this article was written. The research at U.V.A. and M.S.U. was sponsored by the United States Army Research Office under contract number W911NF-12-1-0455 monitored by Dr. Suveen Mathaudhu. The research at MENA and JHU was sponsored by the Army Research Laboratory and was accomplished under Cooperative Agreement No. W911NF-07-2-0073 with technical monitor, Kyu Cho. The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the official policies, either expressed or implied, of the Army Research Laboratory or the U.S. Government. The U.S. government is authorized to reproduce and distribute reprints for government purposes notwithstanding any copyright notation hereon.


  1. 1.
    W. Unsworth, J.F. King, and S.L. Bradshaw, U.S. patent 4,401,621 (1983).Google Scholar
  2. 2.
    Magnesium Elektron, Elektron WE43, Datasheet: 467 (Manchester, England: Magnesium Elektron, n.d.).Google Scholar
  3. 3.
    M. Turski, A. Paradowska, S.-Y. Zhang, D. Mortensen, H. Fjaer, J. Grandfield, B. Davis, and R. DeLorme, Metall. Mater. Trans. A 43A, 1547 (2012).CrossRefGoogle Scholar
  4. 4.
    K. Cho, T. Sano, K. Doherty, C. Yen, G. Gazonas, J. Montgomery, P. Moy, B. Davis, and R. DeLorme, Magnesium Technology and Manufacturing for Ultra Lightweight Armored Ground Vehicles, Army Research Laboratory Report, ARL-RP-326, Accession Number: ADA499411 (Fort Belvoir, VA: DTIC Online, 2009).Google Scholar
  5. 5.
    T. Mukai, K. Ishikawa, Y. Okanda, M. Mabuchi, K. Kubota, and K. Higashi, Light Weight Alloys for Aerospace Application III, ed. E.W. Lee, N.J. Kim, K.V. Jata, and W.E. Frazier (Warrendale, PA: TMS, 1995), pp. 483–492.Google Scholar
  6. 6.
    T. Mukai, T. Mohri, M. Mabuchi, M. Nakamura, K. Ishikawa, and K. Higashi, Scripta Mater. 39, 1251 (1998).CrossRefGoogle Scholar
  7. 7.
    T. Mukai, M. Yamanoi, H. Watanabe, K. Ishikawa, and K. Higashi, Mater. Trans. JIM 42, 1177 (2001).CrossRefGoogle Scholar
  8. 8.
    T. Yokoyama, Strain 39, 167 (2001).CrossRefGoogle Scholar
  9. 9.
    T. Mukai, H. Watanabe, K. Ishikawa, and K. Higashi, Mater. Sci. Forum 419–422, 171 (2003).CrossRefGoogle Scholar
  10. 10.
    V. Livescu, Magnesium Tech. 2006, ed. A.A. Luo, N.R. Neelameggham, and R.S. Beals (Warrendale, PA: TMS, 2006), pp. 153–158.Google Scholar
  11. 11.
    C.W. Tan, Trans. Nonferrous Met. Soc. China 17, S347 (2007).Google Scholar
  12. 12.
    M.T. Tucker, M.F. Horstemeyer, P.M. Gullett, H. El Kadiri, and W.R. Whittington, Scripta Mater. 60, 182 (2009).CrossRefGoogle Scholar
  13. 13.
    B. Li, S. Joshi, K. Azevedo, E. Ma, and K.T. Ramesh, Mater. Sci. Eng. A 517, 24 (2009).CrossRefGoogle Scholar
  14. 14.
    I. Ulacia, N.V. Dudamell, F. Gálvez, S. Yi, M.T. Pérez-Prado, and I. Hurtado, Acta Mater. 58, 2988 (2010).CrossRefGoogle Scholar
  15. 15.
    S. Kurukuri, D.G. Tari, M.J. Worswick, R.K. Mishra, and J.T. Carter, Mg2012: Proc. 9th Inter. Conf. Magnesium Alloys and Their Applications, eds. W.J. Poole and K.U. Kainer (Vancouver, Canada: University of British Columbia, 2012), pp. 777–782.Google Scholar
  16. 16.
    B. Li, S.P. Joshi, O. Almagri, Q. Ma, K.T. Ramesh, and T. Mukai, Acta Mater. 60, 1818 (2012).CrossRefGoogle Scholar
  17. 17.
    A.A. Luo and A.K. Sachdev, Metall. Mater. Trans. A 38A, 1184 (2007).CrossRefGoogle Scholar
  18. 18.
    E.A. Ball and P.B. Prangnell, Scripta Metall. Mater. 31, 111 (1994).CrossRefGoogle Scholar
  19. 19.
    N. Stanford and M.R. Barnett, Mater. Sci. Eng. A 496, 399 (2008).CrossRefGoogle Scholar
  20. 20.
    S.R. Agnew, P. Mehrotra, T.M. Lillo, G.M. Stoica, and P.K. Liaw, Acta Mater. 53, 3135 (2005).CrossRefGoogle Scholar
  21. 21.
    M.R. Barnett, Mater. Sci. Eng. A 464, 1 (2007).CrossRefGoogle Scholar
  22. 22.
    S.R. Agnew, C.N. Tomé, D.W. Brown, T.M. Holden, and S.C. Vogel, Scripta Mater. 48, 1003 (2003).CrossRefGoogle Scholar
  23. 23.
    M.R. Barnett, Mater. Sci. Eng. A 464, 8 (2007).CrossRefGoogle Scholar
  24. 24.
    Y.B. Chun and C.H.J. Davies, Mater. Sci. Eng. A 528, 5713 (2011).CrossRefGoogle Scholar
  25. 25.
    H. Conrad, L. Hays, G. Schoeck, and H. Wiedersich, Acta Metall. 9, 367 (1961).CrossRefGoogle Scholar
  26. 26.
    P. Ward Flynn, J. Mote, and J.E. Dorn, Trans. AIME 221, 1148 (1961).Google Scholar
  27. 27.
    A. Akhtar and E. Teghtsoonian, Acta Metall. 17, 1351 (1969).CrossRefGoogle Scholar
  28. 28.
    A. Couret and D. Caillard, Acta Metall. 33, 1447 (1985).CrossRefGoogle Scholar
  29. 29.
    B. Raeisinia, S.R. Agnew, and A. Akhtar, Metall. Mater. Trans. A 42A, 1418 (2011).CrossRefGoogle Scholar
  30. 30.
    J.F. Stohr and J.P. Poirier, Philos. Mag. 25, 1313 (1972).CrossRefGoogle Scholar
  31. 31.
    T. Obara, H. Yoshinaga, and S. Morozumi, Acta Metall. 21, 845 (1973).CrossRefGoogle Scholar
  32. 32.
    T. Nogaret, W.A. Curtin, J.A. Yasi, L.G. Hector Jr, and D.R. Trinkle, Acta Mater. 58, 4332 (2010).CrossRefGoogle Scholar
  33. 33.
    S.R. Agnew, D.W. Brown, and C.N. Tomé, Acta Mater. 54, 4841 (2006).CrossRefGoogle Scholar
  34. 34.
    O. Muransky, D.G. Carr, M.R. Barnett, E.C. Oliver, and P. Šittner, Mater. Sci. Eng. A 496, 14 (2008).CrossRefGoogle Scholar
  35. 35.
    J. Hamilton, Microstructural Characteristics of High Rate Plastic Deformation in Elektron™ WE43 Magnesium Alloy, Army Research Laboratory Report, ARL-RP-363, Accession Number: ADA562514 (Fort Belvoir, VA: DTIC Online, 2012).Google Scholar
  36. 36.
    A.L. Oppedal, H. El Kadiri, C.N. Tomé, S.C. Vogel, and M.F. Horstemeyer, Philos. Mag. 93, 4311 (2013).Google Scholar
  37. 37.
    L.G. Schultz, J. Appl. Phys. 20, 1030 (1949).CrossRefGoogle Scholar
  38. 38.
    R. Hielscher and H. Schaeben, J. Appl. Cryst. 41, 1024 (2008).CrossRefGoogle Scholar
  39. 39.
    H.-R. Wenk, L. Lutterotti, and S.C. Vogel, Powder Diffr. 25, 283 (2010).CrossRefGoogle Scholar
  40. 40.
    B.A. Gama, S.L. Lopatnikov, and J.W. Gillespie Jr, Appl. Mech. Rev. 57, 223 (2004).CrossRefGoogle Scholar
  41. 41.
    J. Bohlen, M.R. Nürnberg, J.W. Senn, D. Letzig, and S.R. Agnew, Acta Mater. 55, 2101 (2006).CrossRefGoogle Scholar
  42. 42.
    J.D. Robson, Metall. Mater. Trans. A. (2013). doi: 10.1007/s11661-013-1950-1.
  43. 43.
    S.H. Park, S.G. Hong, W. Bang, and C.S. Lee, Mater. Sci. Eng. A 527, 417 (2010).CrossRefGoogle Scholar
  44. 44.
    L. Wu, S.R. Agnew, Y. Ren, D.W. Brown, B. Clausen, G.M. Stoica, H.R. Wenk, and P.K. Liaw, Mater. Sci. Eng. A 527, 7057 (2010).CrossRefGoogle Scholar
  45. 45.
    S.G. Hong, S.H. Park, and C.S. Lee, J. Mater. Res. 25, 966 (2010).CrossRefGoogle Scholar
  46. 46.
    S.G. Hong, S.H. Park, and C.S. Lee, Scripta Mater. 64, 145 (2011).CrossRefGoogle Scholar
  47. 47.
    A.S. Khan, A. Pandey, T. Gnäupel-Herold, and R.K. Mishra, Int. J. Plastic. 27, 688 (2011).CrossRefzbMATHGoogle Scholar
  48. 48.
    J.F. Nie, Scripta Mater. 48, 1009 (2003).CrossRefGoogle Scholar
  49. 49.
    J.D. Robson, Mg2012: Proc. 9th Inter. Conf. Magnesium Alloys and Their Applications, ed. W.J. Poole and K.U. Kainer (Vancouver, Canada: University of British Columbia, 2012), pp. 63–68.Google Scholar
  50. 50.
    S.R. Agnew, R.P. Mulay, F.J. Polesak III, C.A. Calhoun, J.J. Bhattacharyya, and B. Clausen, Acta Mater. 61, 3769 (2013).CrossRefGoogle Scholar
  51. 51.
    S. Sandlöbes, S. Zaefferer, I. Schestakow, S. Yi, and R. Gonzalez-Martinez, Acta Mater. 59, 429 (2011).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2014

Authors and Affiliations

  • Sean Agnew
    • 1
  • Wilburn Whittington
    • 2
  • Andrew Oppedal
    • 2
  • Haitham El Kadiri
    • 2
  • Matthew Shaeffer
    • 3
  • K. T. Ramesh
    • 3
  • Jishnu Bhattacharyya
    • 1
  • Rick Delorme
    • 4
  • Bruce Davis
    • 4
  1. 1.Materials Science and EngineeringUniversity of VirginiaCharlottesvilleUSA
  2. 2.Mechanical EngineeringMississippi State UniversityStarkvilleUSA
  3. 3.Mechanical EngineeringJohns Hopkins UniversityBaltimoreUSA
  4. 4.Magnesium Elektron North AmericaMadisonUSA

Personalised recommendations