Skip to main content
Log in

Computational Analysis Methods in Atomistic Modeling of Crystals

  • Published:
JOM Aims and scope Submit manuscript

Abstract

This article discusses computational analysis methods typically used in atomistic modeling of crystalline materials and highlights recent developments that can provide better insights into processes at the atomic scale. Topics include the classification of local atomic structures, the transition from atomistics to mesoscale and continuum-scale descriptions, and the automated identification of dislocations in atomistic simulation data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. A.S. Keys, C.R. Iacovella, and S.C. Glotzer, J. Comp. Phys. 230, 6438 (2011).

    Article  MATH  Google Scholar 

  2. C.L. Phillips and G.A. Voth, Soft Matter 9, 8552 (2013).

    Article  Google Scholar 

  3. A. Stukowski and K. Albe, Model. Simul. Mater. Sci. 18, 085001 (2010).

    Article  Google Scholar 

  4. A. Stukowski, V.V. Bulatov, and A. Arsenlis, Model. Simul. Mater. Sci. 20, 085007 (2012).

    Article  Google Scholar 

  5. A. Stukowski, Model. Simul. Mater. Sci. 20, 045021 (2012).

    Article  Google Scholar 

  6. J.D. Honeycutt and H.C. Andersen, J. Phys. Chem. 91, 4950 (1987).

    Article  Google Scholar 

  7. G.J. Ackland and A.P. Jones, Phys. Rev. B 73, 054104 (2006).

    Article  Google Scholar 

  8. C.L. Kelchner, S.J. Plimpton, and J.C. Hamilton, Phys. Rev. B 58, 11085 (1998).

    Article  Google Scholar 

  9. T. Schablitzki, J. Rogal, and R. Drautz, Model. Simul. Mater. Sci. 21, 075008 (2013).

    Article  Google Scholar 

  10. J.R. Ullmann, J. ACM 23, 31 (1976).

    Article  MathSciNet  Google Scholar 

  11. P. Erhart, J. Marian, and B. Sadigh, Phys. Rev. B 88, 024116 (2013).

    Article  Google Scholar 

  12. B. Sadigh, P. Erhart, A. Stukowski, A. Caro, E. Martinez, and L. Zepeda-Ruiz, Phys. Rev. B 85, 184203 (2012).

    Article  Google Scholar 

  13. J.A. Zimmerman, D.J. Bammann, and H. Gao, Int. J. Solids Struct. 46, 238 (2009).

    Article  MATH  Google Scholar 

  14. P.M. Gullett, M.F. Horstemeyer, M.I. Baskes, and H. Fang, Model. Simul. Mater. Sci. 16, 015001 (2008).

    Article  Google Scholar 

  15. M.F. Horstemeyer and M.I. Baskes, MRS Proc. 578, 1 (1999).

    Article  Google Scholar 

  16. P.H. Mott, A.S. Argon, and U.W. Suter, J. Comput. Phys. 101, 140 (1992).

    Article  MATH  MathSciNet  Google Scholar 

  17. F. Shimizu, S. Ogata, and J. Li, Mater. Trans. 48, 2923 (2007).

    Article  Google Scholar 

  18. G.J. Tucker, J.A. Zimmerman, and D.L. McDowell, Model. Simul. Mater. Sci. 18, 015002 (2010).

    Article  Google Scholar 

  19. D. Sopu, Y. Ritter, H. Gleiter, and K. Albe, Phys. Rev. B 83, 100202 (2011).

    Article  Google Scholar 

  20. J.A. Zimmerman, C.L. Kelchner, P.A. Klein, J.C. Hamilton, and S.M. Foiles, Phys. Rev. Lett. 87, 165507 (2001).

    Article  Google Scholar 

  21. G.J. Wagner, R.E. Jones, J.A. Templeton, and M.L. Parks, Comput. Method. Appl. M 197, 3351 (2008).

    Article  MATH  MathSciNet  Google Scholar 

  22. J.A. Zimmerman, E.B. Webblll, J.J. Hoyt, R.E. Jones, P.A. Klein, and D.J. Bammann, Model. Simul. Mater. Sci. 12, S319 (2004).

    Article  Google Scholar 

  23. A. Stukowski and A. Arsenlis, Model. Simul. Mater. Sci. 20, 035012 (2012).

    Article  Google Scholar 

  24. E.H. Lee, J. Appl. Mech. 36, 1 (1969).

    Article  MATH  Google Scholar 

  25. A. Stukowski, J. Markmann, J. Weissmüller, and K. Albe, Acta Mater. 57, 1648 (2009).

    Article  Google Scholar 

  26. J. Schäfer, A. Stukowski, and K. Albe, J. Appl. Phys. 114, 143501 (2013).

    Article  Google Scholar 

  27. V.V. Bulatov and W. Cai, Computer Simulations of Dislocations (Oxford University Press, 2006).

  28. F. Akasheh, Private Communication (May 2013).

  29. A. Stukowski and K. Albe, Model. Simul. Mater. Sci. 18, 025016 (2010).

    Article  Google Scholar 

  30. F.C. Frank, Philos. Mag. Ser. 7 42, 809 (1951).

    MATH  Google Scholar 

  31. M. Elsey and B. Wirth, Paper presented at the Proceedings of the 8th International Conference on Computer Vision Theory and Applications, VISAPP’13, 2013.

  32. C.S. Hartley and Y. Mishin, Acta Mater. 53, 1313 (2005).

    Article  Google Scholar 

  33. C. Begau, J. Hua, and A. Hartmaier, J. Mech. Phys. Solids 60, 711 (2012).

    Article  Google Scholar 

  34. C. Begau, A. Hartmaier, E.P. George, and G.M. Pharr, Acta Mater. 59, 934 (2011).

    Article  Google Scholar 

  35. N. Naveen Kumar, R. Tewari, P.V. Durgaprasad, B.K. Dutta, and G.K. Dey, Comp. Mater. Sci. 77, 260 (2013).

    Article  Google Scholar 

  36. A. Stukowski, K. Albe, and D. Farkas, Phys. Rev. B 82, 224103 (2010).

    Article  Google Scholar 

  37. C.J. Ruestes, E.M. Bringa, A. Stukowski, J.F. Rodriguez Nieva, G. Bertolino, Y. Tang, and M.A. Meyers, Scripta Mater. 68, 817 (2013).

    Article  Google Scholar 

  38. D. Farkas, A. Caro, E. Bringa, and D. Crowson, Acta Mater. 61, 3249 (2013).

    Article  Google Scholar 

  39. D. Sopu, K. Albe, Y. Ritter, and H. Gleiter, Appl. Phys. Lett. 94, 191911 (2009).

    Article  Google Scholar 

  40. J. Löffler and J. Weissmüller, Phys. Rev. B 52, 7076 (1995).

    Article  Google Scholar 

  41. A. Shrake and J.A. Rupley, J. Mol. Biol. 79, 351 (1973).

    Article  Google Scholar 

  42. J. Erlebacher and I. McCue, Acta Mater. 60, 6146 (2012).

    Article  Google Scholar 

  43. H. Edelsbrunner and E.P. Mücke, ACM Trans. Graphic 13, 43 (1994).

    Article  MATH  Google Scholar 

  44. E.B. Tadmor, M. Ortiz, and R. Phillips, Philos. Mag. A 73, 1529 (1996).

    Article  Google Scholar 

  45. T. Junge, J.-F. Molinari, W.A. Curtin, and J. Song (Paper presented at the IV European Conference on Computational Mechanics, Paris, France, 16–21 May 2010).

  46. L.E. Shilkrot, R.E. Miller, and W.A. Curtin, Phys. Rev. Lett. 89, 025501 (2002).

    Article  Google Scholar 

  47. A. Stukowski, Model. Simul. Mater. Sci. 18, 015012 (2010).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Stukowski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stukowski, A. Computational Analysis Methods in Atomistic Modeling of Crystals. JOM 66, 399–407 (2014). https://doi.org/10.1007/s11837-013-0827-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-013-0827-5

Keywords

Navigation