JOM

, Volume 66, Issue 1, pp 129–138 | Cite as

Grain Boundary Segregation of Interstitial and Substitutional Impurity Atoms in Alpha-Iron

Article

Abstract

The macroscopic behavior of polycrystalline materials is influenced by the local variation of properties caused by the presence of impurities and defects. The effect of these impurities at the atomic scale can either embrittle or strengthen grain boundaries (GBs) within. Thus, it is imperative to understand the energetics associated with segregation to design materials with desirable properties. In this study, molecular statics simulations were employed to analyze the energetics associated with the segregation of various elements (helium, hydrogen, carbon, phosphorous, and vanadium) to four 〈100〉 (Σ5 and Σ13 GBs) and six 〈110〉 (Σ3, Σ9, and Σ11 GBs) symmetric tilt grain boundaries in α-Fe. This knowledge is important for designing stable interfaces in harsh environments. Simulation results show that the local atomic arrangements within the GB region and the resulting structural units have a significant influence on the magnitude of binding energies of the impurity (interstitial and substitutional) atoms. These data also suggest that the site-to-site variation of energies within a boundary is substantial. Comparing the binding energies of all 10 boundaries shows that the Σ3(112) boundary possesses a much smaller binding energy for all interstitial and substitutional impurity atoms among the boundaries examined in this study. Additionally, based on the Rice–Wang model, our total energy calculations show that V has a significant beneficial effect on the Fe grain boundary cohesion, while P has a detrimental effect on grain boundary cohesion, much weaker than H and He. This is significant for applications where extreme environmental damage generates lattice defects and grain boundaries act as sinks for both interstitial and substitutional impurity atoms. This methodology provides us with a tool to effectively identify the local as well as the global segregation behavior that can influence the GB cohesion.

References

  1. 1.
    T. Kalil and C. Wadia, Materials Genome Initiative: A Renaissance of American Manufacturing (Washington, DC: The White House, 2011).Google Scholar
  2. 2.
    H. Gleiter, Mater. Sci. Eng. 52, 91 (1982).CrossRefGoogle Scholar
  3. 3.
    P. Goodhew, Grain Boundary Structure and Kinetics (Metals Park, OH: American Society for Metals, 1980).Google Scholar
  4. 4.
    D. Wolf, Acta Metall. 37, 1983 (1989).CrossRefGoogle Scholar
  5. 5.
    A. Sutton and V. Vitek, Philos. Trans. R. Soc. Lond. Ser. Math. Phys. Sci. 309, 1 (1983).CrossRefGoogle Scholar
  6. 6.
    G.J. Wang, A. Sutton, and V. Vitek, Acta Metall. 32, 1093 (1984).CrossRefGoogle Scholar
  7. 7.
    W. Gui-Jin and V. Vitek, Acta Metall. 34, 951 (1986).CrossRefGoogle Scholar
  8. 8.
    J. Rittner and D. Seidman, Phys. Rev. B 54, 6999 (1996).CrossRefGoogle Scholar
  9. 9.
    I. Adlakha, M.A. Bhatia, K.N. Solanki, and M.A. Tschopp, ArXiv E-prints 1309, 3634 (2013).Google Scholar
  10. 10.
    K.N. Solanki, M.A. Tschopp, M.A. Bhatia, and N.R. Rhodes, Metall Mater. Trans. 44, 1365 (2013).CrossRefGoogle Scholar
  11. 11.
    M.A. Tschopp, K.N. Solanki, F. Gao, X. Sun, M.A. Khaleel, and M.F. Horstemeyer, Phys. Rev. B 85, 064108 (2012).CrossRefGoogle Scholar
  12. 12.
    M.A. Bhatia and K.N. Solanki, ArXiv E-prints 1310.2643 (2013).Google Scholar
  13. 13.
    J.M. Burgers, Proc. Phys. Soc. 52, 23 (1940).CrossRefGoogle Scholar
  14. 14.
    L. Bragg and J.F. Nye, Proc. R. Soc. Lond. Ser. Math. Phys. Sci. 190, 474 (1947).Google Scholar
  15. 15.
    W.T. Read and W. Shockley, Phys. Rev. 78, 275 (1950).CrossRefMATHGoogle Scholar
  16. 16.
    G.H. Bishop and B. Chalmers, Scr. Metall. 2, 133 (1968).CrossRefGoogle Scholar
  17. 17.
    J. Hirth, Acta Metall. 22, 1023 (1974).CrossRefGoogle Scholar
  18. 18.
    H. Grimmer, W. Bollmann, and D.H. Warrington, Acta Crystallogr. A 30, 197 (1974).CrossRefGoogle Scholar
  19. 19.
    P.D. Bristowe and A.G. Crocker, Philos. Mag. 38, 487 (1978).CrossRefGoogle Scholar
  20. 20.
    R.C. Pond, Philos. Mag. 39, 679 (1979).CrossRefGoogle Scholar
  21. 21.
    R.C. Pond, D.A. Smith, and V. Vitek, Acta Metall. 27, 235 (1979).CrossRefGoogle Scholar
  22. 22.
    K.W. Ingle and A.G. Crocker, Philos. Mag. 41, 713 (1980).CrossRefGoogle Scholar
  23. 23.
    V. Vitek, D. Smith, and R. Pond, Philos. Mag. 41, 649 (1980).CrossRefGoogle Scholar
  24. 24.
    A. Sutton, Philos. Mag. 46, 171 (1982).CrossRefGoogle Scholar
  25. 25.
    A. Sutton, Philos. Mag. Lett. 59, 53 (1989).CrossRefGoogle Scholar
  26. 26.
    M.A. Tschopp and D.L. Mcdowell, Philos. Mag. 87, 3871 (2007).CrossRefGoogle Scholar
  27. 27.
    M.A. Tschopp and D.L. McDowell, Philos. Mag. 87, 3147 (2007).CrossRefGoogle Scholar
  28. 28.
    Y. Mishin, M.R. Sørensen, and A.F. Voter, Philos. Mag. 81, 2591 (2001).CrossRefGoogle Scholar
  29. 29.
    M.A. Tschopp and D.L. McDowell, Int. J. Plast 24, 191 (2008).CrossRefGoogle Scholar
  30. 30.
    D.E. Spearot, M.A. Tschopp, K.I. Jacob, and D.L. McDowell, Acta Mater. 55, 705 (2007).CrossRefGoogle Scholar
  31. 31.
    M.A. Tschopp, G.J. Tucker, and D.L. McDowell, Comput. Mater. Sci. 44, 351 (2008).CrossRefGoogle Scholar
  32. 32.
    D.E. Spearot, K.I. Jacob, and D.L. McDowell, Acta Mater. 53, 3579 (2005).CrossRefGoogle Scholar
  33. 33.
    D.M. Saylor, B.S. El Dasher, A.D. Rollett, and G.S. Rohrer, Acta Mater. 52, 3649 (2004).CrossRefGoogle Scholar
  34. 34.
    D. Brandon, B. Ralph, S. Ranganathan, and M. Wald, Acta Metall. 12, 813 (1964).CrossRefGoogle Scholar
  35. 35.
    R.C. Pond, Proc. R. Soc. Lond. Math. Phys. Sci. 357, 471 (1977).CrossRefGoogle Scholar
  36. 36.
    H. Kokawa, T. Watanabe, and S. Karashima, Philos. Mag. 44, 1239 (1981).CrossRefGoogle Scholar
  37. 37.
    R.W. Balluffi, Y. Komem, and T. Schober, Surf. Sci. 31, 68 (1972).CrossRefGoogle Scholar
  38. 38.
    M.A. Rodriguez, D.M. Follstaedt, J.A. Knapp, L.N. Brewer, E.A. Holm, S.M. Foiles, K.M. Hattar, B.B. Clark, D.L. Olmsted, and D.L. Medlin, Science at the Interface: Grain Boundaries in Nanocrystalline Metals (Albuquerque, NM: Sandia National Laboratories, 2009).CrossRefGoogle Scholar
  39. 39.
    V. Vitek and G.J. Wang, Surf. Sci. 144, 110 (1984).CrossRefGoogle Scholar
  40. 40.
    P. Lejček and S. Hofmann, Crit. Rev. Solid State Mater. Sci. 20, 1 (1995).CrossRefGoogle Scholar
  41. 41.
    W. Swiatnicki, S. Lartigue-Korinek, and J.Y. Laval, Acta Metall. Mater. 43, 795 (1995).CrossRefGoogle Scholar
  42. 42.
    T. Diaz de la Rubia, H.M. Zbib, T.A. Khraishi, B.D. Wirth, M. Victoria, and M.J. Caturla, Nature 406, 871 (2000).CrossRefGoogle Scholar
  43. 43.
    A. Möslang and T. Wiss, Nat. Mater. 5, 679 (2006).CrossRefGoogle Scholar
  44. 44.
    W.T. Geng, A.J. Freeman, R. Wu, and G.B. Olson, Phys. Rev. B 62, 6208 (2000).CrossRefGoogle Scholar
  45. 45.
    J.P. Buban, K. Matsunaga, J. Chen, N. Shibata, W.Y. Ching, T. Yamamoto, and Y. Ikuhara, Science 311, 212 (2006).CrossRefGoogle Scholar
  46. 46.
    M. Yamaguchi, Metall. Mater. Trans. 42, 319 (2011).CrossRefGoogle Scholar
  47. 47.
    C.J. McMahon Jr and V. Vitek, Acta Metall. 27, 507 (1979).CrossRefGoogle Scholar
  48. 48.
    D.N. Seidman, B.W. Krakauer, and D. Udler, J. Phys. Chem. Solids 55, 1035 (1994).CrossRefGoogle Scholar
  49. 49.
    A. Sutton and R. Balluffi, Interfaces in Crystalline Materials (Oxford, U.K.: Clarendon Press, 1995).Google Scholar
  50. 50.
    E.D. Hondros and M.P. Seah, Int. Met. Rev. 22, 262 (1977).CrossRefGoogle Scholar
  51. 51.
    M. Yamaguchi, M. Shiga, and H. Kaburaki, Science 307, 393 (2005).CrossRefGoogle Scholar
  52. 52.
    M.A. Tschopp, M.F. Horstemeyer, F. Gao, X. Sun, and M. Khaleel, Scr. Mater. 64, 908 (2011).CrossRefGoogle Scholar
  53. 53.
    X.-M. Bai, A.F. Voter, R.G. Hoagland, M. Nastasi, and B.P. Uberuaga, Science 327, 1631 (2010).CrossRefGoogle Scholar
  54. 54.
    N.R. Rhodes, M.A. Tschopp, and K.N. Solanki, Model. Simul. Mater. Sci. Eng. 21, 035009 (2013).CrossRefGoogle Scholar
  55. 55.
    M.A. Tschopp, F. Gao, L. Yang, and K.N. Solanki, ArXiv E-prints 1309.6337 (2013).Google Scholar
  56. 56.
    J.R. Rice and J.-S. Wang, Mater. Sci. Eng. 107, 23 (1989).CrossRefGoogle Scholar
  57. 57.
    S. Plimpton, J. Comput. Phys. 117, 1 (1995).CrossRefMATHGoogle Scholar
  58. 58.
    A. Ramasubramaniam, M. Itakura, and E.A. Carter, Phys. Rev. B 79, 174101 (2009).CrossRefGoogle Scholar
  59. 59.
    M.I. Mendelev, S. Han, W. Son, G.J. Ackland, and D.J. Srolovitz, Phys. Rev. B 76, 214105 (2007).CrossRefGoogle Scholar
  60. 60.
    G.J. Ackland, M.I. Mendelev, D.J. Srolovitz, S. Han, and A.V. Barashev, J. Phys. Condens. Matter 16, S2629 (2004).CrossRefGoogle Scholar
  61. 61.
    D.J. Hepburn and G.J. Ackland, Phys. Rev. B 78, 165115 (2008).CrossRefGoogle Scholar
  62. 62.
    K. Refson, Comput. Phys. Commun. 126, 310 (2000).CrossRefMATHGoogle Scholar
  63. 63.
    F. Gao, H. Deng, H.L. Heinisch, and R.J. Kurtz, J. Nucl. Mater. 418, 115 (2011).CrossRefGoogle Scholar
  64. 64.
    M.I. Mendelev, S. Han, D.J. Srolovitz, G.J. Ackland, D.Y. Sun, and M. Asta, Philos. Mag. 83, 3977 (2003).CrossRefGoogle Scholar
  65. 65.
    E. Polak and G. Ribiere, Math. Model. Numer. Anal. 3, 35 (1969).MATHMathSciNetGoogle Scholar
  66. 66.
    D. Wolf, Acta Metall. Mater. 38, 781 (1990).CrossRefGoogle Scholar
  67. 67.
    M. Yamaguchi and V. Vitek, Philos. Mag. 34, 1 (1976).CrossRefGoogle Scholar
  68. 68.
    V.V. Zabil’skii, Metall. Sci. Heat Treat. 29, 32 (1987).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2013

Authors and Affiliations

  • M. Rajagopalan
    • 1
  • M. A. Tschopp
    • 2
  • K. N. Solanki
    • 1
  1. 1.School for Engineering of Matter, Transport, and EnergyArizona State UniversityTempeUSA
  2. 2.U.S. Army Research LaboratoryWeapons and Materials Research DirectorateAberdeen Proving GroundUSA

Personalised recommendations