Rare-Earth Elements in Lighting and Optical Applications and Their Recycling

Abstract

Rare-earth elements (REEs) are used in lighting and optical applications to enable color and light adjustment, miniaturization, and energy efficiency. Common applications of REEs include phosphors for light-emitting diodes, lasers, and electronic video displays. This article reviews how REEs are widely used in these applications. However, supply constraints, including rising prices, environmental concerns over mining and refining processes, and China’s control over the supply of the vast majority of REEs, are of concern for manufacturers. In view of these supply constraints, this article discusses ways for manufacturers of lighting and optical devices to identify potential substitutes and recycling methods for REEs.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. 1.

    S.B. Castor and L.B. Hedrick, Industrial Minerals Volume, 7th ed., ed. J.E. Kogel, N.C. Trivedi, J.M. Barker, and S.T. Krukowski (Littleton, CO: Society for Mining, Metallurgy, and Exploration, 2006), pp. 769–792.

  2. 2.

    C. Hocquard, Presentation “Rare Earths (REE)”, Energy Breakfast Roundtable, 20 May 2010 (Brussels: Institut Français Des Relations Internationales, 2010), pp. 1–85.

    Google Scholar 

  3. 3.

    J. Spooner, Mining J. Rev. (2006), pp. 1–14. www.mmta.co.uk/uploaded_files/Rare%20Earths.pdf. Accessed 29 July 2011.

  4. 4.

    U.S. Department of Energy, Critical Materials Strategy (DOE, 2010), pp. 1–166.

  5. 5.

    M. Mikami, H. Watanabe, K. Uheda, S. Shimooka, Y. Shimomura, T. Kurushima, and N. Kijima, IOP Conf. Ser. Mater. Sci. Eng. 1, 1 (2009).

    Article  Google Scholar 

  6. 6.

    P. Smet, Luminescence and Luminescent Materials (PowerPoint slides) (2010) http://www.telecom.fpms.ac.be/PhotonDoctoralSchool2010/documents/Luminescence-DocSchoolPhotonics2010-PP97.pdf. Accessed 20 Aug 2013.

  7. 7.

    S. Nakamura, Proc. SPIE 3002, 26 (1997).

    Article  Google Scholar 

  8. 8.

    C–.C. Tsai, J. Wang, M.-H. Chen, Y.-C. Hsu, Y.-J. Lin, C.-W. Lee, S.-B. Huang, H.-L. Hu, and W.-H. Cheng, IEEE Trans. Device Mater. Reliab. 9, 367 (2009).

    Article  Google Scholar 

  9. 9.

    Y.-S. Tang, S.-F. Hu, C.C. Lin, N.C. Bagkar, and R.-S. Liu, Appl. Phys. Lett. 90, 151108 (2007).

    Article  Google Scholar 

  10. 10.

    R. Mueller-Mach, G.O. Mueller, and M.R. Krames, Proc. SPIE 5187, 115 (2003).

    Article  Google Scholar 

  11. 11.

    R. Mueller-Mach, G.O. Mueller, M.R. Krames, and T. Trottier, IEEE J. Sel. Top. Quantum Electron. 8, 339 (2002).

    Article  Google Scholar 

  12. 12.

    G.O. Mueller and R. Mueller-Mach, Proc. SPIE 3938 (30), 30 (2000).

  13. 13.

    R. Mueller-Mach, G. Mueller, M.R. Krames, H.A. Hoppe, F. Stadler, W. Schnick, T. Juestel, and P. Schmidt, Phys. Status Solidi (A) 202, 1727 (2005).

    Article  Google Scholar 

  14. 14.

    T. Uheda, N. Hirosaki, Y. Yamamoto, A. Naito, T. Nakajima, and H. Yamamoto, Electrochem. Solid-State Lett. 9, H22 (2006).

    Article  Google Scholar 

  15. 15.

    Q. Zeng, H. Tanno, K. Egoshi, N. Tanamachi, and S. Zhang, Appl. Phys. Lett. 88, 051906 (2006).

    Article  Google Scholar 

  16. 16.

    Y. Pan, M. Wu, and Q. Su, J. Phys. Chem. Solids 65, 845 (2004).

    Article  Google Scholar 

  17. 17.

    M. Mohapatra, Y.P. Naik, V. Natarajan, T.K. Seshagiri, Z. Singh, and S.V. Godbole, J. Lumin. 130, 2402 (2010).

    Article  Google Scholar 

  18. 18.

    H.-X. Mai, Y.-W. Zhang, R. Si, Z.-G. Yan, L.-D. Sun, L.-P. You, and C.-H. Yan, J. Am. Chem. Soc. 128, 6426 (2006).

    Article  Google Scholar 

  19. 19.

    S.W. Allison and G.T. Gillies, Rev. Sci. Instrum. 68, 2615 (1997).

    Article  Google Scholar 

  20. 20.

    S. Shionoya, W.M. Yen, and H. Yamamoto, eds., Phosphor Handbook, 2nd ed. (Boca Raton, FL: CRC Press, 2006), p. 455.

    Google Scholar 

  21. 21.

    H.J. Ryu, J.K. Park, C.H. Kim, K.Y. Jung, H.K. Jung and H.D. Park (Paper presented at the proceedings of 5th rare earth material development and application symposium, Euseong, South Korea, 9 December 2004), pp. 41–61.

  22. 22.

    R.P. Rao, J. Electrochem. Soc. 143, 189 (1996).

    Article  Google Scholar 

  23. 23.

    X.-D. Sun, C. Gao, J. Wang, and X.-D. Xiang, Appl. Phys. Lett. 70, 3353 (1997).

    Article  Google Scholar 

  24. 24.

    F.J. Duarte, Tunable Laser Applications, 2nd ed. (New York: CRC Press, Taylor & Francis Group, 2009).

    Google Scholar 

  25. 25.

    M.N. Islam, IEEE J. Sel. Top. Quantum Electron. 8, 548 (2002).

    MathSciNet  Article  Google Scholar 

  26. 26.

    S. Tanabe, J. Alloy. Compd. 408–412, 675 (2006).

    Article  Google Scholar 

  27. 27.

    G. Harkonen, M. Leppanen, E. Soininen, R. Tornqvist, and J. Viljanen, J. Alloy. Compd. 225, 552 (1995).

    Article  Google Scholar 

  28. 28.

    O.Y. Mogilevskaya and P.A. Roshchina, Powder Metall. Met. Ceram. 3, 256 (1965).

    Article  Google Scholar 

  29. 29.

    M.G. Pecht, R.E. Kaczmarek, X. Song, D.A. Hazelwood, R.A. Kavetsky, and D.K. Anand, Rare Earth Materials: Insights and Concerns (College Park, MD: CALCE EPSC Press, University of Maryland, 2012).

    Google Scholar 

  30. 30.

    M.O. Watanabe, S. Itoh, K. Mizushima, and T. Sasaki, J. Appl. Phys. 78, 2880 (1995).

    Article  Google Scholar 

  31. 31.

    M.O. Watanabe, S. Itoh, K. Mizushima, and T. Sasaki, Appl. Phys. Lett. 68, 2962 (1996).

    Article  Google Scholar 

  32. 32.

    M.O. Watanabe, S. Itoh, T. Sasaki, and K. Mizushima, Phys. Rev. Lett. 77, 187 (1996).

    Article  Google Scholar 

  33. 33.

    M.O. Watanabe, T. Sasaki, S. Itoh, and K. Mizushima, Thin Solid Films 282, 334 (1996).

    Google Scholar 

  34. 34.

    T. Ogi, Y. Kaihatsu, F. Iskandar, W.N. Wang, and K. Okuyama, Adv. Mater. 20, 3235 (2008).

    Article  Google Scholar 

  35. 35.

    Y. Kaihatsu, F. Iskandar, H. Widiyandari, W.N. Wang, and K. Okuyama, Electrochem. Solid-State Lett. 12, J33 (2009).

    Article  Google Scholar 

  36. 36.

    W.-N. Wang, T. Ogi, Y. Kaihatsu, F. Iskandar, and K. Okuyama, J. Mater. Chem. 21, 5183 (2011).

    Article  Google Scholar 

  37. 37.

    Y. Kaihatsu, W.N. Wang, F. Iskandar, and K. Okuyama, Mater. Lett. 64, 836 (2010).

    Article  Google Scholar 

  38. 38.

    X.F. Liu, S. Ye, Y.B. Qiao, G.P. Dong, Q. Zhang, and J.R. Qiu, Chem. Commun. 27, 4073 (2009).

    Article  MATH  Google Scholar 

  39. 39.

    S. Ye, F. Xiao, Y.X. Pan, Y.Y. Ma, and Q.Y. Zhang, Mater. Sci. Eng. R 71, 1 (2010).

    Article  Google Scholar 

  40. 40.

    C.R. Ronda, T. Jüstel, and H. Nikol, J. Alloy. Compd. 275–277, 669 (1998).

    Article  Google Scholar 

  41. 41.

    T. Erdem and H.V. Demir, Nat. Photonics 5, 26 (2011).

    Article  Google Scholar 

  42. 42.

    T. Homma, T. Ubusawa, T. Furuyama, A. Morikaku, and, K. Tananka, European patent WO/2009/087908 (16 July 2009).

  43. 43.

    G. Mei, K. Xie and G. Li (Research thesis, College of Resources and Environmental Engineering, Wuhan University of Technology, China, 2007).

  44. 44.

    R. Shimizu, O. Tomioka, Y. Enokida, and I. Yamamoto, Proc. First Int. Symp. Supercritical Fluid Technology for Energy and Environment Application (Suwon, Korea, 2002), p. 276.

  45. 45.

    O. Tomioka, Y. Enokida, and I. Yamamoto, Prog. Nucl. Energy 37, 417 (2000).

    Article  Google Scholar 

  46. 46.

    O. Tomioka, Y. Meguro, Y. Enokida, I. Yamamoto, and Z. Yoshida, J. Nucl. Sci. Technol. 38, 1097 (2001).

    Article  Google Scholar 

  47. 47.

    O. Tomioka, Y. Enokida, and I. Yamamoto, J. Nucl. Sci. Technol. 38, 461 (2001).

    Article  Google Scholar 

  48. 48.

    O. Tomioka, Y. Enokida, and I. Yamamoto, Sep. Sci. Technol. 37, 1153 (2002).

    Article  Google Scholar 

  49. 49.

    Y. Enokida, S. El-Fatah, and C.M. Wai, Ind. Eng. Chem. Res. 41, 2283 (2002).

    Article  Google Scholar 

  50. 50.

    Y. Meguro, S. Iso, Z. Yoshida, J. Ougiyanagi, A. Uehara, Y. Enokida, I. Yamamoto, O. Tomioka, S. Yamamoto, R. Wada, and K. Yamaguchi, Proc. First Int. Symp. Supercritical Fluid Technology for Energy and Environment Application (Suwon, Korea, 2002), p. 179.

  51. 51.

    Y. Enokida, I. Yamamoto, and C.M. Wai, ACS Symp. Ser. 860, 10 (2003).

    Article  Google Scholar 

  52. 52.

    T. Hirajima, K. Sasakia, A. Bissomboloa, H. Hiraib, M. Hamadac, and M. Tsunekawa, Sep. Purif. Technol. 44, 197 (2005).

    Article  Google Scholar 

  53. 53.

    W.A. Sokół, Institute of Mechanised Construction & Rock Mining (Poland), Recovery of valuable yttrium and europium compounds from waste phosphors, polish science and innovations for the environment (2003). http://www.act-clean.eu/index.php?node_id=100.154&lang_id=1. Accessed 23 Sept 2011.

  54. 54.

    M.A. Rabah, Waste Manag. 28, 318 (2008).

    Article  Google Scholar 

  55. 55.

    L.V. Resende and C.A. Morais, Miner. Eng. 23, 277 (2010).

    Article  Google Scholar 

  56. 56.

    R. Otto and A. Wojtalewicz-Kasprzak, U.S. patent 7,976,798 B2 (12 July 2011).

  57. 57.

    Japan Recycles Minerals from Used Electronics, The Wall Street Journal, 4 October 2010.

Download references

Acknowledgement

The authors would like to thank the more than 100 companies and organizations that support research activities at the Center for Advanced Life Cycle Engineering at the University of Maryland annually, specifically the CALCE Prognostics and Health Management Group.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Michael Pecht.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Song, X., Chang, MH. & Pecht, M. Rare-Earth Elements in Lighting and Optical Applications and Their Recycling. JOM 65, 1276–1282 (2013). https://doi.org/10.1007/s11837-013-0737-6

Download citation

Keywords

  • Fiber Laser
  • Terbium
  • Yttrium Aluminum Garnet
  • NaYF4
  • Zn2SiO4