Advertisement

JOM

, Volume 65, Issue 10, pp 1276–1282 | Cite as

Rare-Earth Elements in Lighting and Optical Applications and Their Recycling

  • Xin Song
  • Moon-Hwan Chang
  • Michael PechtEmail author
Article

Abstract

Rare-earth elements (REEs) are used in lighting and optical applications to enable color and light adjustment, miniaturization, and energy efficiency. Common applications of REEs include phosphors for light-emitting diodes, lasers, and electronic video displays. This article reviews how REEs are widely used in these applications. However, supply constraints, including rising prices, environmental concerns over mining and refining processes, and China’s control over the supply of the vast majority of REEs, are of concern for manufacturers. In view of these supply constraints, this article discusses ways for manufacturers of lighting and optical devices to identify potential substitutes and recycling methods for REEs.

Keywords

Fiber Laser Terbium Yttrium Aluminum Garnet NaYF4 Zn2SiO4 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgement

The authors would like to thank the more than 100 companies and organizations that support research activities at the Center for Advanced Life Cycle Engineering at the University of Maryland annually, specifically the CALCE Prognostics and Health Management Group.

References

  1. 1.
    S.B. Castor and L.B. Hedrick, Industrial Minerals Volume, 7th ed., ed. J.E. Kogel, N.C. Trivedi, J.M. Barker, and S.T. Krukowski (Littleton, CO: Society for Mining, Metallurgy, and Exploration, 2006), pp. 769–792.Google Scholar
  2. 2.
    C. Hocquard, Presentation “Rare Earths (REE)”, Energy Breakfast Roundtable, 20 May 2010 (Brussels: Institut Français Des Relations Internationales, 2010), pp. 1–85.Google Scholar
  3. 3.
    J. Spooner, Mining J. Rev. (2006), pp. 1–14. www.mmta.co.uk/uploaded_files/Rare%20Earths.pdf. Accessed 29 July 2011.
  4. 4.
    U.S. Department of Energy, Critical Materials Strategy (DOE, 2010), pp. 1–166.Google Scholar
  5. 5.
    M. Mikami, H. Watanabe, K. Uheda, S. Shimooka, Y. Shimomura, T. Kurushima, and N. Kijima, IOP Conf. Ser. Mater. Sci. Eng. 1, 1 (2009).CrossRefGoogle Scholar
  6. 6.
    P. Smet, Luminescence and Luminescent Materials (PowerPoint slides) (2010) http://www.telecom.fpms.ac.be/PhotonDoctoralSchool2010/documents/Luminescence-DocSchoolPhotonics2010-PP97.pdf. Accessed 20 Aug 2013.
  7. 7.
    S. Nakamura, Proc. SPIE 3002, 26 (1997).CrossRefGoogle Scholar
  8. 8.
    C–.C. Tsai, J. Wang, M.-H. Chen, Y.-C. Hsu, Y.-J. Lin, C.-W. Lee, S.-B. Huang, H.-L. Hu, and W.-H. Cheng, IEEE Trans. Device Mater. Reliab. 9, 367 (2009).CrossRefGoogle Scholar
  9. 9.
    Y.-S. Tang, S.-F. Hu, C.C. Lin, N.C. Bagkar, and R.-S. Liu, Appl. Phys. Lett. 90, 151108 (2007).CrossRefGoogle Scholar
  10. 10.
    R. Mueller-Mach, G.O. Mueller, and M.R. Krames, Proc. SPIE 5187, 115 (2003).CrossRefGoogle Scholar
  11. 11.
    R. Mueller-Mach, G.O. Mueller, M.R. Krames, and T. Trottier, IEEE J. Sel. Top. Quantum Electron. 8, 339 (2002).CrossRefGoogle Scholar
  12. 12.
    G.O. Mueller and R. Mueller-Mach, Proc. SPIE 3938 (30), 30 (2000).Google Scholar
  13. 13.
    R. Mueller-Mach, G. Mueller, M.R. Krames, H.A. Hoppe, F. Stadler, W. Schnick, T. Juestel, and P. Schmidt, Phys. Status Solidi (A) 202, 1727 (2005).CrossRefGoogle Scholar
  14. 14.
    T. Uheda, N. Hirosaki, Y. Yamamoto, A. Naito, T. Nakajima, and H. Yamamoto, Electrochem. Solid-State Lett. 9, H22 (2006).CrossRefGoogle Scholar
  15. 15.
    Q. Zeng, H. Tanno, K. Egoshi, N. Tanamachi, and S. Zhang, Appl. Phys. Lett. 88, 051906 (2006).CrossRefGoogle Scholar
  16. 16.
    Y. Pan, M. Wu, and Q. Su, J. Phys. Chem. Solids 65, 845 (2004).CrossRefGoogle Scholar
  17. 17.
    M. Mohapatra, Y.P. Naik, V. Natarajan, T.K. Seshagiri, Z. Singh, and S.V. Godbole, J. Lumin. 130, 2402 (2010).CrossRefGoogle Scholar
  18. 18.
    H.-X. Mai, Y.-W. Zhang, R. Si, Z.-G. Yan, L.-D. Sun, L.-P. You, and C.-H. Yan, J. Am. Chem. Soc. 128, 6426 (2006).CrossRefGoogle Scholar
  19. 19.
    S.W. Allison and G.T. Gillies, Rev. Sci. Instrum. 68, 2615 (1997).CrossRefGoogle Scholar
  20. 20.
    S. Shionoya, W.M. Yen, and H. Yamamoto, eds., Phosphor Handbook, 2nd ed. (Boca Raton, FL: CRC Press, 2006), p. 455.Google Scholar
  21. 21.
    H.J. Ryu, J.K. Park, C.H. Kim, K.Y. Jung, H.K. Jung and H.D. Park (Paper presented at the proceedings of 5th rare earth material development and application symposium, Euseong, South Korea, 9 December 2004), pp. 41–61.Google Scholar
  22. 22.
    R.P. Rao, J. Electrochem. Soc. 143, 189 (1996).CrossRefGoogle Scholar
  23. 23.
    X.-D. Sun, C. Gao, J. Wang, and X.-D. Xiang, Appl. Phys. Lett. 70, 3353 (1997).CrossRefGoogle Scholar
  24. 24.
    F.J. Duarte, Tunable Laser Applications, 2nd ed. (New York: CRC Press, Taylor & Francis Group, 2009).Google Scholar
  25. 25.
    M.N. Islam, IEEE J. Sel. Top. Quantum Electron. 8, 548 (2002).MathSciNetCrossRefGoogle Scholar
  26. 26.
    S. Tanabe, J. Alloy. Compd. 408–412, 675 (2006).CrossRefGoogle Scholar
  27. 27.
    G. Harkonen, M. Leppanen, E. Soininen, R. Tornqvist, and J. Viljanen, J. Alloy. Compd. 225, 552 (1995).CrossRefGoogle Scholar
  28. 28.
    O.Y. Mogilevskaya and P.A. Roshchina, Powder Metall. Met. Ceram. 3, 256 (1965).CrossRefGoogle Scholar
  29. 29.
    M.G. Pecht, R.E. Kaczmarek, X. Song, D.A. Hazelwood, R.A. Kavetsky, and D.K. Anand, Rare Earth Materials: Insights and Concerns (College Park, MD: CALCE EPSC Press, University of Maryland, 2012).Google Scholar
  30. 30.
    M.O. Watanabe, S. Itoh, K. Mizushima, and T. Sasaki, J. Appl. Phys. 78, 2880 (1995).CrossRefGoogle Scholar
  31. 31.
    M.O. Watanabe, S. Itoh, K. Mizushima, and T. Sasaki, Appl. Phys. Lett. 68, 2962 (1996).CrossRefGoogle Scholar
  32. 32.
    M.O. Watanabe, S. Itoh, T. Sasaki, and K. Mizushima, Phys. Rev. Lett. 77, 187 (1996).CrossRefGoogle Scholar
  33. 33.
    M.O. Watanabe, T. Sasaki, S. Itoh, and K. Mizushima, Thin Solid Films 282, 334 (1996).Google Scholar
  34. 34.
    T. Ogi, Y. Kaihatsu, F. Iskandar, W.N. Wang, and K. Okuyama, Adv. Mater. 20, 3235 (2008).CrossRefGoogle Scholar
  35. 35.
    Y. Kaihatsu, F. Iskandar, H. Widiyandari, W.N. Wang, and K. Okuyama, Electrochem. Solid-State Lett. 12, J33 (2009).CrossRefGoogle Scholar
  36. 36.
    W.-N. Wang, T. Ogi, Y. Kaihatsu, F. Iskandar, and K. Okuyama, J. Mater. Chem. 21, 5183 (2011).CrossRefGoogle Scholar
  37. 37.
    Y. Kaihatsu, W.N. Wang, F. Iskandar, and K. Okuyama, Mater. Lett. 64, 836 (2010).CrossRefGoogle Scholar
  38. 38.
    X.F. Liu, S. Ye, Y.B. Qiao, G.P. Dong, Q. Zhang, and J.R. Qiu, Chem. Commun. 27, 4073 (2009).CrossRefzbMATHGoogle Scholar
  39. 39.
    S. Ye, F. Xiao, Y.X. Pan, Y.Y. Ma, and Q.Y. Zhang, Mater. Sci. Eng. R 71, 1 (2010).CrossRefGoogle Scholar
  40. 40.
    C.R. Ronda, T. Jüstel, and H. Nikol, J. Alloy. Compd. 275–277, 669 (1998).CrossRefGoogle Scholar
  41. 41.
    T. Erdem and H.V. Demir, Nat. Photonics 5, 26 (2011).CrossRefGoogle Scholar
  42. 42.
    T. Homma, T. Ubusawa, T. Furuyama, A. Morikaku, and, K. Tananka, European patent WO/2009/087908 (16 July 2009).Google Scholar
  43. 43.
    G. Mei, K. Xie and G. Li (Research thesis, College of Resources and Environmental Engineering, Wuhan University of Technology, China, 2007).Google Scholar
  44. 44.
    R. Shimizu, O. Tomioka, Y. Enokida, and I. Yamamoto, Proc. First Int. Symp. Supercritical Fluid Technology for Energy and Environment Application (Suwon, Korea, 2002), p. 276.Google Scholar
  45. 45.
    O. Tomioka, Y. Enokida, and I. Yamamoto, Prog. Nucl. Energy 37, 417 (2000).CrossRefGoogle Scholar
  46. 46.
    O. Tomioka, Y. Meguro, Y. Enokida, I. Yamamoto, and Z. Yoshida, J. Nucl. Sci. Technol. 38, 1097 (2001).CrossRefGoogle Scholar
  47. 47.
    O. Tomioka, Y. Enokida, and I. Yamamoto, J. Nucl. Sci. Technol. 38, 461 (2001).CrossRefGoogle Scholar
  48. 48.
    O. Tomioka, Y. Enokida, and I. Yamamoto, Sep. Sci. Technol. 37, 1153 (2002).CrossRefGoogle Scholar
  49. 49.
    Y. Enokida, S. El-Fatah, and C.M. Wai, Ind. Eng. Chem. Res. 41, 2283 (2002).CrossRefGoogle Scholar
  50. 50.
    Y. Meguro, S. Iso, Z. Yoshida, J. Ougiyanagi, A. Uehara, Y. Enokida, I. Yamamoto, O. Tomioka, S. Yamamoto, R. Wada, and K. Yamaguchi, Proc. First Int. Symp. Supercritical Fluid Technology for Energy and Environment Application (Suwon, Korea, 2002), p. 179.Google Scholar
  51. 51.
    Y. Enokida, I. Yamamoto, and C.M. Wai, ACS Symp. Ser. 860, 10 (2003).CrossRefGoogle Scholar
  52. 52.
    T. Hirajima, K. Sasakia, A. Bissomboloa, H. Hiraib, M. Hamadac, and M. Tsunekawa, Sep. Purif. Technol. 44, 197 (2005).CrossRefGoogle Scholar
  53. 53.
    W.A. Sokół, Institute of Mechanised Construction & Rock Mining (Poland), Recovery of valuable yttrium and europium compounds from waste phosphors, polish science and innovations for the environment (2003). http://www.act-clean.eu/index.php?node_id=100.154&lang_id=1. Accessed 23 Sept 2011.
  54. 54.
    M.A. Rabah, Waste Manag. 28, 318 (2008).CrossRefGoogle Scholar
  55. 55.
    L.V. Resende and C.A. Morais, Miner. Eng. 23, 277 (2010).CrossRefGoogle Scholar
  56. 56.
    R. Otto and A. Wojtalewicz-Kasprzak, U.S. patent 7,976,798 B2 (12 July 2011).Google Scholar
  57. 57.
    Japan Recycles Minerals from Used Electronics, The Wall Street Journal, 4 October 2010.Google Scholar

Copyright information

© TMS 2013

Authors and Affiliations

  1. 1.Institute of Soil ScienceChinese Academy of SciencesNanjingPeople’s Republic of China
  2. 2.Center for Advanced Life Cycle EngineeringUniversity of MarylandCollege ParkUSA

Personalised recommendations