Skip to main content
Log in

Characterization of Solder Joint Reliability Using Cyclic Mechanical Fatigue Testing

  • Published:
JOM Aims and scope Submit manuscript

Abstract

This article summarizes the mechanics of two mechanical fatigue methods, cyclic bending fatigue and shear fatigue, in inducing failure in solder joints in package assemblies, and it presents the characteristics of fatigue failures resulting from these methods using example cases of Sn-Pb eutectic and Sn-rich Pb-free solder alloys. Numerical simulation suggests that both testing configurations induce fatigue failure by the crack-opening mode. In the case of bending fatigue, the strain induced by the bending displacement is found to be sensitive to chip geometry, and it induces fatigue cracks mainly at the solder matrix adjacent to the printed circuit board interface. In case of shear fatigue, the failure location is firmly fixed at the solder neck, created by solder mask, where an abrupt change in the solder geometry occurs. Both methods conclude that the Coffin–Manson model is the most appropriate model for the isothermal mechanical fatigue of solder alloys. An analysis of fatigue characteristics using the frame of the Coffin–Manson model produces several insightful results, such as the reason why Pb-free alloys show higher fatigue resistance than Sn-Pb alloys even if they are generally more brittle. Our analysis suggests that it is related to higher work hardening. All these results indicate that mechanical fatigue can be an extremely useful method for fast screening of defective package structures and also in gaining a better understanding of fatigue failure mechanism and prediction of reliability in solder joints.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. K. Harr, C.B. Lee, Y.S. Kim, S.W. Park, J.G. Kim, and Y. Kweon, ECS Trans. 44, 975 (2012).

    Article  Google Scholar 

  2. J.H. Lau, Solder. Surf. Mount Technol. 16, 12 (2004).

    Article  Google Scholar 

  3. J.H. Lau, IEEE Trans. Compon. Packag. Manuf. Technol. B 19, 728 (1996).

    Article  Google Scholar 

  4. K. Zeng and K.N. Tu, Mater. Sci. Eng. R 38, 55 (2002).

    Article  Google Scholar 

  5. E.H. Wong, S.K.W. Seah, and V.P.W. Shim, Microelectron. Reliab. 48, 1747 (2008).

    Article  Google Scholar 

  6. B. Wang, J.J. Li, A. Gallagher, J. Wrezel, P. Towashirporn, and N.Q. Zhao, Microelectron. Reliab. 52, 1475 (2012).

    Article  Google Scholar 

  7. J. Karppinen, J. Li, J. Pakarinen, T.T. Mattila, and M.P. Kröckel, Microelectron. Reliab. 52, 190 (2012).

    Article  Google Scholar 

  8. S.J. Jeon, J.W. Kim, B. Lee, H.J. Lee, S.B. Jung, S. Hyun, and H.J. Lee, Microelectron. Eng. 91, 147 (2012).

    Article  Google Scholar 

  9. X.J. Fan, A.S. Ranouta, and H.S. Dhiman, IEEE Trans. Compon. Packag. Manuf. Technol. 3, 53 (2013).

    Google Scholar 

  10. Y. Yao and L.M. Keer, Microelectron. Reliab. 53, 629 (2013).

    Article  Google Scholar 

  11. J. Hokka, J. Li, T.T. Mattila, and M.P. Kröckel, Microelectron. Reliab. 52, 1445 (2012).

    Article  Google Scholar 

  12. H. Yu, N. GmbH, U. Germany, and D.K. Shangguan, Solder. Surf. Mount Technol. 25, 31 (2013).

    Article  Google Scholar 

  13. H.T. Lee, H.S. Lin, C.S. Lee, and P.W. Chen, Mater. Sci. Eng. A 407, 36 (2005).

    Article  Google Scholar 

  14. D.A.A. Shnawah, S.B.M. Said, M.F.M. Sabri, I.A. Badruddin, and F.X. Che, Mater. Sci. Eng. A 551, 160 (2012).

    Article  Google Scholar 

  15. D. Shangguan, Lead-Free Solder Interconnect Reliability (Materials Park, OH: ASM International, 2005).

    Google Scholar 

  16. K.J. Puttlitz and K.A. Stalter, Handbook of Lead-Free Solder Technology for Microelectronic Assemblies (New York: Marcel Dekker, 2004).

    Book  Google Scholar 

  17. Y. Li, K.S. Moon, and C.P. Wong, Science 308, 1419 (2005).

    Article  Google Scholar 

  18. A.Z. Miric, Soldering and Surface Mount Technology (Bradford, UK: MCB University Press, 1998), p. 19.

    Google Scholar 

  19. D.A. Shnawah, M.F.M. Sabri, and I.A. Badruddin, J. Microelectron. Electron. Compon. Mater. 4, 3 (2013).

    Google Scholar 

  20. W.H. Chen, C.F. Yu, H.C. Cheng, Y.M. Tsai, and S.T. Lu, Microelectron. Reliab. 53, 30 (2013).

    Article  Google Scholar 

  21. W. Leea, L.T. Nguyena, and G.S. Selvaduray, Microelectron. Reliab. 40, 231 (2000).

    Article  Google Scholar 

  22. J.H.L. Pang, D.Y.R. Chong, and T.H. Low, IEEE Trans. Compon. Packag. Manuf. Technol. 24, 705 (2001).

    Article  Google Scholar 

  23. D.A. Shnawah, M.F.M. Sabri, and I.A. Badruddin, Microelectron. Reliab. 52, 90 (2012).

    Article  Google Scholar 

  24. G. Khatibi, W. Wroczewski, B. Weiss, and H. Ipser, Microelectron. Reliab. 49, 1283 (2009).

    Article  Google Scholar 

  25. Z.W. Zhong and T.Y. Tee, Proc. IEEE 97, 175 (2009).

    Article  Google Scholar 

  26. A. Syed, Proc. 54th Electron. Compon. Technol. Conf. (Piscataway, NJ: IEEE, 2004), pp. 737–746.

  27. D. Herkommer, J. Punch, and M. Reid, Microelectron. Reliab. 50, 116 (2010).

    Article  Google Scholar 

  28. H. Wei and K. Wang, J. Electron. Mater. 40, 2314 (2011).

    Article  Google Scholar 

  29. W.H. Bang, C.U. Kim, H.T. Ma, and T.K. Lee, Proc. Electron. Compon. Technol. Conf. (Piscataway, NJ: IEEE, 2012), pp. 2070–2074.

  30. H.L. Xu, W.H. Bang, C.U. Kim, and T.K. Lee, Proc. Electron. Compon. Technol. Conf. (Piscataway, NJ: IEEE, 2012), pp. 484–489.

  31. Y. Zhao, C. Basaran, A. Cartwright, and T, Dishongh, International Society Conference on Thermal Phenomena, 174 (2000).

  32. T.K. Lee, H.T. Ma, K.C. Liu, and J. Xue, J. Electron. Mater. 39, 2564 (2010).

    Article  Google Scholar 

  33. J.D. Krupp, W.A. Brantley, and H. Gerstein, J. Endod. 10, 372 (1984).

    Article  Google Scholar 

  34. W.H. Bang, M.W. Moon, C.U. Kim, S.H. Kang, J.P. Jung, and K.H. Oh, J. Electron. Mater. 37, 417 (2008).

    Article  Google Scholar 

  35. X.Q. Shi, H.L.J. Pang, W. Zhou, and Z.P. Wang, Int. J. Fatigue 22, 217 (2000).

    Article  Google Scholar 

  36. H.L. John, B.S. Xiong, and T.H. Low, Int. J. Fatigue 26, 865 (2004).

    Article  Google Scholar 

  37. J.D. Morrow, ASTM-STP 378, 45 (1965).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Choong-Un Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, CU., Bang, WH., Xu, H. et al. Characterization of Solder Joint Reliability Using Cyclic Mechanical Fatigue Testing. JOM 65, 1362–1373 (2013). https://doi.org/10.1007/s11837-013-0720-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-013-0720-2

Keywords

Navigation