Skip to main content
Log in

A Predictive Model for Whisker Formation Based on Local Microstructure and Grain Boundary Properties

  • Published:
JOM Aims and scope Submit manuscript

Abstract

Whisker and hillock formation in thin films is well known as a highly local mechanism for stress relaxation, where in many cases, only a few whiskers form out of thousands of grains in a film. In this article, the microstructural characteristics for specific grains to form whiskers in β-Sn films are discussed in light of our recent whisker growth model, establishing a relationship among grain boundary sliding limited Coble creep, surface grain geometry, and film stress for different stress conditions, including for thermal cycling. Through our recent finite-element simulations of stresses induced by room-temperature aging and thermal cycling of textured microstructures, the role of elastic and thermoelastic anisotropy in creating preferred whisker formation sites and the general propensity of a film to form whiskers have been proposed for a range of β-Sn film textures. Taken together, these models suggest a strategy for identifying the effects of local microstructure and β-Sn anisotropy on whisker formation. If these predictions are accurate, then whisker growth risk may be effectively reduced by engineering film microstructures and textures for specific applications and stress conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. M. Sobiech, U. Welzel, E.J. Mittemeijer, W. Hügel, and A. Seekamp, Appl. Phys. Lett. 93, 011906 (2008).

    Article  Google Scholar 

  2. M. Sobiech, M. Wohlschlögel, U. Welzell, E.J. Mittemeijer, W. Hügel, A. Seekamp, W. Liu, and G.E. Ice, Appl. Phys. Lett. 94, 221901 (2009).

    Article  Google Scholar 

  3. K.N. Tu, Phys. Rev. B. 49, 2030 (1994).

    Article  Google Scholar 

  4. B.Z. Lee and D.N. Lee, Acta Mater. 46, 3701 (1998).

    Article  Google Scholar 

  5. E. Chason, N. Jadhav, W.L. Chan, L. Reinbold, and K.S. Kumar, Appl. Phys. Lett. 92, 171901 (2008).

    Article  Google Scholar 

  6. K.S. Kumar, L. Reinbold, A. Bower, and E. Chason, J. Mater. Res. 23, 2916 (2008).

    Article  Google Scholar 

  7. W.J. Boettinger, C.E. Johnson, L.A. Bendersky, K.-W. Moon, M.E. Williams, and G.R. Stafford, Acta Mater. 53, 5033 (2005).

    Article  Google Scholar 

  8. F. Pei, N. Jadhav, and E. Chason, JOM 64, 1176 (2012).

    Article  Google Scholar 

  9. K.W. Moon, C.E. Johnson, M.E. Williams, O. Kongstein, G.R. Stafford, C.A. Handwerker, and W.J. Boettinger, J. Electron. Mater. 34, L31 (2005).

    Article  Google Scholar 

  10. N. Jadhav, E. Buchovecky, E. Chason, and A. Bower, JOM 62, 30 (2010).

  11. A.E. Pedigo, unpublished research.

  12. P. Sarobol, W.H. Chen, A.E. Pedigo, P. Su, J.E. Blendell, and C.A. Handwerker, J. Mater. Res. 28, 747 (2013).

    Article  Google Scholar 

  13. T. Frolov, W.J. Boettinger, and Y. Mishin, Acta Mater. 58, 5471 (2010).

    Article  Google Scholar 

  14. F. Pei, N. Jadhav, and E. Chason, Appl. Phys. Lett. 100, 221902 (2012).

    Article  Google Scholar 

  15. G.T. Galyon and L. Palmer, IEEE Trans. Electron. Packag. Manuf. 28, 17 (2005).

    Article  Google Scholar 

  16. P.T. Vianco and J.A. Rejent, J. Electron. Mater. 38, 1815 (2009).

    Article  Google Scholar 

  17. Y. Wang, J.E. Blendell, and C.A. Handwerker, J. Mater. Sci. (submitted)

  18. P. Sarobol, J.E. Blendell, and C.A. Handwerker, Acta Mater. 61, 1991 (2013).

    Article  Google Scholar 

  19. P. Sarobol, J.P. Koppes, W.H. Chen, P. Su, J.E. Blendell, and C.A. Handwerker, Mater. Lett. 99, 76 (2013).

    Article  Google Scholar 

  20. J.P. Koppes (Ph.D. Dissertation, Purdue University, 2012).

  21. A.E. Pedigo, C.A. Handwerker, and J.E. Blendell, Proceedings of the Electronic Components and Technology Conference (2008), p. 1498.

  22. J.W. Cahn, Y. Mishin, and A. Suzuki, Acta Mater. 54, 4953 (2006).

    Article  Google Scholar 

  23. Z.T. Trautt, A. Adland, A. Karma, and Y. Mishin, Acta Mater. 60, 6528 (2012).

    Article  Google Scholar 

  24. K. Suganuma, A. Baated, K.-S. Kim, K. Hamasaki, N. Nemoto, T. Nakagawa, and T. Yamada, Acta Mater. 59, 7255 (2011).

    Article  Google Scholar 

  25. S.A. Langer, E. Fuller, and W.C. Carter, Comput. Sci. Eng. 3, 15 (2001).

    Article  Google Scholar 

  26. A.C.E. Reid, R.C. Lua, R.E. García, V.R. Coffman, and S.A. Langer, Int. J. Mater. Prod. Technol. 35, 361 (2009).

    Article  Google Scholar 

  27. W.H. Chen, P. Sarobol, J. Holaday, C.A. Handwerker, and J.E. Blendell, J. Mater. Res. (submitted)

  28. J.E. Blendell, M.D. Vaudin, and E.R. Fuller, J. Am. Ceram. Soc. 82, 3217 (1999).

    Article  Google Scholar 

  29. W.A. Dollase, J. Appl. Crystallogr. 19, 267 (1986).

    Article  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge support from NSF Graduate Research Fellowship Program, Cisco Systems, Inc., Foresite Inc., ECI Technology, and Naval Surface Warfare Center (Crane Division). We would like to thank Dr. Peng Su, Maureen Williams, and Dr. Anthony Rollett for valuable discussions and Dr. Martin Kunz and Dr. Nobumichi Tamura for assistance with data extraction and analysis. We acknowledge support from DOE-BES (DE-FG02-05ER15637) and NSF (EAR-0337006) as well as access to ALS beamline 12.3.2. ALS is supported by the Director, Office of Science, Office of Basic Energy Sciences, Materials Science Division, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. The microdiffraction program at the ALS beamline 12.3.2 was made possible by NSF Grant 0416243. Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. A. Handwerker.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sarobol, P., Wang, Y., Chen, W.H. et al. A Predictive Model for Whisker Formation Based on Local Microstructure and Grain Boundary Properties. JOM 65, 1350–1361 (2013). https://doi.org/10.1007/s11837-013-0717-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-013-0717-x

Keywords

Navigation