Skip to main content

Advertisement

Log in

Potential Applications of Concentrated Solar Thermal Technologies in the Australian Minerals Processing and Extractive Metallurgical Industry

  • Published:
JOM Aims and scope Submit manuscript

Abstract

The Australian minerals processing and extractive metallurgy industries are responsible for about 20% of Australia’s total greenhouse gas (GHG) emissions. This article reviews the potential applications of concentrated solar thermal (CST) energy in the Australian minerals processing industry to reduce this impact. Integrating CST energy into these industries would reduce their reliance upon conventional fossil fuels and reduce GHG emissions. As CST technologies become more widely deployed and cheaper, and as fuel prices rise, CST energy will progressively become more competitive with conventional energy sources. Some of the applications identified in this article are expected to become commercially competitive provided the costs for pollution abatement and GHG mitigation are internalized. The areas of potential for CST integration identified in this study can be classed as either medium/low-temperature or high-temperature applications. The most promising medium/low-grade applications are electricity generation and low grade heating of liquids. Electricity generation with CST energy—also known as concentrated solar power—has the greatest potential to reduce GHG emissions out of all the potential applications identified because of the 24/7 dispatchability when integrated with thermal storage. High-temperature applications identified include the thermal decomposition of alumina and the calcination of limestone to lime in solar kilns, as well as the production of syngas from natural gas and carbonaceous materials for various metallurgical processes including nickel and direct reduced iron production. Hybridization and integration with thermal storage could enable CST to sustain these energy-intensive metallurgical processes continuously. High-temperature applications are the focus of this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Clean Energy Regulator, Greenhouse and Energy Information 20092010, Australian Government, Canberra, http://www.cleanenergyregulator.gov.au/National-Greenhouse-and-Energy-Reporting/published-information/greenhouse-and-energy-information/Greenhouse-and-Energy-information-2009-2010/Pages/default.aspx.

  2. DIICCSRTE, National Greenhouse Gas Inventory, Department of Industry, Innovation, Climate Change, Science, Research and Tertiary Education, Australian Government, Canberra, http://ageis.climatechange.gov.au.

  3. A. Steinfeld, Energy 22, 311 (1997).

    Article  Google Scholar 

  4. A.C. Beath, Energy 43, 261 (2012).

    Article  Google Scholar 

  5. London Metal Exchange, London, www.lme.com.

  6. Australian Aluminum Council Ltd., Sustainability Report 2010 (Canberra, Australia: Australian Aluminum Council Ltd., 2010), http://aluminum.org.au/sustainability-report-archive.

  7. P. Van den Heede and N. De Belie, Cem. Concr. Compos. 34, 431 (2012).

    Article  Google Scholar 

  8. T. Norgate and N. Haque, J. Clean. Prod. 29–30, 53 (2012).

    Article  Google Scholar 

  9. T.E. Norgate, S. Jahanshahi, and W.J. Rankin, J. Clean. Prod. 15, 838 (2007).

    Article  Google Scholar 

  10. International Energy Agency, Technology RoadmapConcentrating Solar Power (Paris, France: International Energy Agency, 2010), http://www.iea.org/publications/freepublications/publication/csp_roadmap.pdf.

  11. A. Ummadisingu and M.S. Soni, Renew. Sustain. Energy Rev. 15, 5169 (2011).

    Article  Google Scholar 

  12. Novatech Solar, Technical data Novatech Solar, http://www.novatecsolar.com/21-1-Performance.html.

  13. Kogan Creek Solar Boost, CS Energy, Brisbane, http://kogansolarboost.com.au/.

  14. R.I. Dunn, P.J. Hearps, and M.N. Wright, Proc. IEEE 100, 504 (2012). doi:10.1109/JPROC.2011.2163739.

    Article  Google Scholar 

  15. Gemasolar, Torresol Energy, Seville, Spain, http://www.torresolenergy.com/TORRESOL/gemasolar-plant/en.

  16. Ivanpah Solar Electric Generating Station, http://www.nrel.gov/csp/solarpaces/project_detail.cfm/projectID=62.

  17. J. Hernández-Moro and J.M. Martínez-Duart, Energy Policy 41, 184 (2012).

    Article  Google Scholar 

  18. NREL, Concentrating Solar Power Projects by Project Name, http://www.nrel.gov/csp/solarpaces/.

  19. E. Taibi, D. Gielen, and M. Bazilian, Renew. Sustain. Energy Rev. 16, 73 (2012).

    Article  Google Scholar 

  20. M. Karagiorgas, A. Botzios, and T. Tsoutsos, Renew. Sustain. Energy Rev. 5, 157 (2001).

    Article  Google Scholar 

  21. A. Meier, E. Bonaldi, G.M. Cella, and W. Lipinski, J. Sol. Energy Trans. ASME 127, 365 (2005).

    MATH  Google Scholar 

  22. M. Hanchen, S. Bruckner, and A. Steinfeld, Appl. Therm. Eng. 31, 1798 (2011).

    Article  Google Scholar 

  23. A. Ziebik and W. Stanek, Int. J. Energy Res. 30, 203 (2006).

    Article  Google Scholar 

  24. R. McNaughton, S.R. McEvoy, G. Hart, J-S. Kim, K.Wong, and W. Stein (Paper presented at the Proceedings of the 16th Solar PACES Conference, France, 2010).

  25. A. Steinfeld and E.A. Fletcher, Energy 16, 1011 (1991).

    Article  Google Scholar 

  26. C. Wieckert, U. Frommherz, S. Kraupl, E. Guillot, G. Olalde, M. Epstein, S. Santen, T. Osinga, and A. Steinfeld, J. Sol. Energy Trans. ASME 129, 190 (2006).

    Article  Google Scholar 

  27. A. Steinfeld and G. Thompson, Energy 19, 1077 (1994).

    Article  Google Scholar 

  28. A. Steinfeld, P. Kuhn, and J. Karni, Energy 18, 239 (1993).

    Article  Google Scholar 

  29. S. Kraupl and A. Steinfeld, J. Sol. Energy Trans. ASME 125, 124 (2003).

    Article  Google Scholar 

  30. H. Tanaka, K. Miyagawa, and T. Harada, FASTMET, FASTMELT, and ITmk3: Development of New Coal-Based Ironmaking Processes (Charlotte, NC: Midrex, RHF Technologies, 2007/2008), http://midrex.com/uploads/documents/FASTMET%20FASTMELT%20ITmk3.pdf.

  31. B. Anameric and S.K. Kawatra, Miner. Process. Extr. Metall. Rev. 28, 59 (2007).

    Article  Google Scholar 

  32. NASA, Surface Meteorology and Solar Energy, https://eosweb.larc.nasa.gov/cgi-bin/sse/sse.cgi?+s01#s01; in Geoscience Australia and ABARE, Australian Energy Resource Assessment, Geoscience Australia, Australian Government, Canberra (Figure 10.13), 2010, http://ga.gov.au/products/servlet/controller?event=GEOCAT_DETAILS&catno=70142.

  33. Geoscience Australia, Australian Atlas of Minerals Resources, Australian Government, Canberra, 2013, http://www.australianminesatlas.gov.au/?site=atlas&tool=search2011.

  34. A. Meier, E. Bonaldi, G.M. Cella, W. Lipinski, and D. Wuillemin, Sol. Energy 80, 1355 (2006).

    Article  Google Scholar 

  35. http://www.qmag.com.au/.

  36. T. Harada and H. Tanaka, ISIJ Int. 51, 1301 (2011).

    Article  Google Scholar 

  37. N. Haque and T. Norgate, J. Clean. Prod. 39, 220 (2013).

    Article  Google Scholar 

  38. Woodside Petroleum, 2012 Annual Report (Perth, Australia: Woodside Petroleum, 2013), http://www.woodside.com.au/Lists/AnnualReports/2012%20Woodside%20Annual%20Report.pdf.

  39. CIF Annual Report to Greenhouse Challenge Plus 2007/8, Cement Industry Federation Limited, 2008, http://cement.org.au/file_download/127/CIF+GCP+07_08+report+combined+dec08.pdf.

  40. A. Meier, N. Gremaud, and A. Steinfeld, Energy Convers. Manage. 46, 905 (2005).

    Article  Google Scholar 

  41. J.G. Reid, Australian Mining and Metallurgy, The Sir Maurice Mawby Memorial Volume, 2nd ed., Vol. 2, ed. J.T. Woodcock and J.K. Hamilton (Melbourne, Australia: AusIMM, 1993), pp. 1195–1199.

    Google Scholar 

  42. B.F. Wishaw, Australian Mining and Metallurgy, The Sir Maurice Mawby Memorial Volume, 2nd ed., Vol. 2, ed. J.T. Woodcock and J.K. Hamilton (Melbourne, Australia: AusIMM, 1993), pp. 1203–1206.

    Google Scholar 

  43. G.M. Mudd, Prediction of Greenhouse Gas Emissions for the Olympic Dam Mega-Expansion, 2009, http://users.monash.edu.au/~gmudd/files/2009-04-CO2-Pred-v-ODam.pdf.

  44. DRET, Nyrstar Port Pirie Smelter Case Study, Department of Resources, Energy and Tourism (Canberra, Australia: Australian Government, 2009), http://www.ret.gov.au/energy/Documents/energyefficiencyopps/PDF/Industry%20Case%20Study%20Nyrstar.pdf.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jim Hinkley.

Additional information

Thomas Eglinton was a vacation student at CSIRO.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eglinton, T., Hinkley, J., Beath, A. et al. Potential Applications of Concentrated Solar Thermal Technologies in the Australian Minerals Processing and Extractive Metallurgical Industry. JOM 65, 1710–1720 (2013). https://doi.org/10.1007/s11837-013-0707-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-013-0707-z

Keywords

Navigation