Skip to main content
Log in

Improved Diffusion-Resistant Ability of Multicomponent Nitrides: From Unitary TiN to Senary High-Entropy (TiTaCrZrAlRu)N

  • Published:
JOM Aims and scope Submit manuscript

Abstract

Multicomponent high-entropy nitrides have been attempted as robust diffusion barrier materials to inhibit the severe interdiffusion of Cu and Si; however, the improvement in their diffusion resistance relative to the abilities of few-component nitrides has actually not been verified. Thus, in this study, nitride barriers with different numbers of components (metallic elements), from unitary TiN to senary high-entropy (TiTaCrZrAlRu)N (with the same face-centered cubic structure and a thickness of 5 nm), were prepared. The failure of these nitride barriers in resisting the interdiffusion of Cu and Si was examined, and the activation energy of Cu diffusion through the nitrides was determined. With more components incorporated, the failure temperature of the nitrides was found to markedly increase from 550°C to 900°C, and the activation energy of Cu diffusion was effectively raised from 107 kJ/mol to 161 kJ/mol. Severe lattice distortions and random cohesions are suggested as the dominant factors for the improved diffusion-resistant ability of the multicomponent high-entropy nitrides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, and S.Y. Chang, Adv. Eng. Mater. 6, 299 (2004).

    Article  Google Scholar 

  2. J.W. Yeh, S.K. Chen, J.Y. Gan, S.J. Lin, T.S. Chin, T.T. Shun, C.H. Tsau, and S.Y. Chang, Metall. Mater. Trans. A 35A, 2533 (2004).

    Article  Google Scholar 

  3. C.J. Tong, Y.L. Chen, S.K. Chen, J.W. Yeh, T.T. Shun, C.H. Tsau, S.J. Lin, and S.Y. Chang, Metall. Mater. Trans. A 36A, 881 (2005).

    Article  Google Scholar 

  4. J.W. Yeh, S.Y. Chang, Y.D. Hong, S.K. Chen, and S.J. Lin, Mater. Chem. Phys. 103, 41 (2007).

    Article  Google Scholar 

  5. C.J. Tong, M.R. Chen, S.K. Chen, J.W. Yeh, T.T. Shun, S.J. Lin, and S.Y. Chang, Metall. Mater. Trans. A 36A, 1263 (2005).

    Article  Google Scholar 

  6. C.H. Lai, S.J. Lin, J.W. Yeh, and S.Y. Chang, Surf. Coat. Technol. 201, 3275 (2006).

    Article  Google Scholar 

  7. S.Y. Chang, S.Y. Lin, Y.C. Huang, and C.L. Wu, Surf. Coat. Technol. 204, 3307 (2010).

    Article  Google Scholar 

  8. S.Y. Chang, S.Y. Lin, and Y.C. Huang, Thin Solid Films 519, 4865 (2011).

    Article  Google Scholar 

  9. S.Y. Lin, S.Y. Chang, Y.C. Huang, F.S. Shieu, and J.W. Yeh, Surf. Coat. Technol. 206, 5096 (2012).

    Article  Google Scholar 

  10. S.Y. Chang, M.K. Chen, and D.S. Chen, J. Electrochem. Soc. 156, G37 (2009).

    Article  Google Scholar 

  11. S.Y. Chang and D.S. Chen, Appl. Phys. Lett. 94, 231909 (2009).

    Article  Google Scholar 

  12. S.Y. Chang and D.S. Chen, J. Electrochem. Soc. 157, G154 (2010).

    Article  Google Scholar 

  13. S.Y. Chang, C.Y. Wang, M.K. Chen, and C.E. Li, J. Alloy Compd. 509, L85 (2011).

    Article  Google Scholar 

  14. S.Y. Chang, C.E. Li, S.C. Chiang, and Y.C. Huang, J. Alloy Compd. 515, 4 (2012).

    Article  Google Scholar 

  15. A.E. Kaloyeros and E. Eisenbraun, Annu. Rev. Mater. Sci. 30, 363 (2000).

    Article  Google Scholar 

  16. T. Kouno, H. Niwa, and M. Yamada, J. Electrochem. Soc. 145, 2164 (1998).

    Article  Google Scholar 

  17. K.H. Min, K.C. Chun, and K.B. Kim, J. Vac. Sci. Technol. B 14, 3263 (1996).

    Article  Google Scholar 

  18. P. Alén, M. Ritala, K. Arstila, J. Keinonen, and M. Leskelä, J. Electrochem. Soc. 152, G361 (2005).

    Article  Google Scholar 

  19. S.H. Kwon, O.K. Kwon, J.S. Min, and S.W. Kang, J. Electrochem. Soc. 153, G578 (2006).

    Article  Google Scholar 

  20. C.W. Chen, J.S. Chen, and J.S. Jeng, J. Electrochem. Soc. 155, H438 (2008).

    Article  Google Scholar 

  21. J.S. Fang, C.F. Chiu, J.H. Lin, T.Y. Lin, and T.S. Chin, J. Electrochem. Soc. 156, H147 (2009).

    Article  Google Scholar 

  22. J.S. Fang, J.H. Lin, B.Y. Chen, and T.S. Chin, J. Electrochem. Soc. 158, H97 (2011).

    Article  Google Scholar 

  23. P. Majumdera and C. Takoudis, Nanotechnology 19, 205202 (2008).

    Article  Google Scholar 

  24. L.C. Leu, D.P. Norton, L. McElwee, and T.J. Anderson, Appl. Phys. Lett. 92, 111917 (2008).

    Article  Google Scholar 

  25. Q. Xie, Y.L. Jiang, J. Musschoot, D. Deduytsche, C. Detavernier, R.L. Van Meirhaeghe, S. Van Den Berghe, G.P. Ru, B.Z. Li, and X.P. Qu, Thin Solid Films 517, 4689 (2009).

    Article  Google Scholar 

  26. S.H. Kim, H.T. Kim, S.S. Yim, D.J. Lee, K.S. Kim, H.M. Kim, K.B. Kim, and H. Sohn, J. Electrochem. Soc. 155, H589 (2008).

    Article  Google Scholar 

  27. Y. Wang, F. Cao, M.L. Zhang, and T. Zhang, Acta Mater. 59, 400 (2011).

    Article  Google Scholar 

  28. P. Shewmon, Diffusion in Solids (The Minerals, Metals & Materials Society: Warrendale, PA, 2000).

    Google Scholar 

  29. L. Tsetsersis, S. Logothetidis, and S.T. Pantelides, Appl. Phys. Lett. 94, 161903 (2009).

    Article  Google Scholar 

  30. L. Tsetsersis, S. Logothetidis, and S.T. Pantelides, Surf. Coat. Technol. 204, 2089 (2010).

    Article  Google Scholar 

  31. Y. Zhao and G. Lu, Phys. Rev. B. 79, 214101 (2009).

    Article  Google Scholar 

  32. M.Y. Kwak, D.H. Shin, T.W. Kang, and K.N. Kim, Thin Solid Films 339, 290 (1999).

    Article  Google Scholar 

  33. M.T. Wang, Y.C. Lin, and M.C. Chen, J. Electrochem. Soc. 145, 2538 (1998).

    Article  Google Scholar 

  34. J.C. Chuang, S.L. Tu, and M.C. Chen, J. Electrochem. Soc. 145, 4290 (1998).

    Article  Google Scholar 

  35. M.B. Takeyama, A. Noya, and K. Sakanishi, J. Vac. Sci. Technol. B 18, 1333 (2000).

    Article  Google Scholar 

  36. K.T. Nam, A. Datta, S.H. Kim, and K.B. Kim, Appl. Phys. Lett. 79, 2549 (2001).

    Article  Google Scholar 

  37. T.N. Arunagiri, Y. Zhang, O. Chyan, M. El-Bouanani, M.J. Kim, K.H. Chen, C.T. Wu, and L.C. Chen, Appl. Phys. Lett. 86, 083104 (2005).

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support provided for this research by the National Science Council, Taiwan, under Grant No. NSC-100-2628-E-005-006-MY3, and in part by the Ministry of Education, Taiwan, under the ATU plan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shou-Yi Chang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chang, SY., Huang, YC., Li, CE. et al. Improved Diffusion-Resistant Ability of Multicomponent Nitrides: From Unitary TiN to Senary High-Entropy (TiTaCrZrAlRu)N. JOM 65, 1790–1796 (2013). https://doi.org/10.1007/s11837-013-0676-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-013-0676-2

Keywords

Navigation