Advances in Characterization of Non-Rare-Earth Permanent Magnets: Exploring Commercial Alnico Grades 5–7 and 9

Abstract

The magnetic domain structure of commercial alnico grades 5–7 and 9 was investigated using a magneto-optical Kerr effect (MOKE) to gain an understanding of their coercivity mechanisms at the micron to millimeter scale. In alnico 5–7, the magnetic domain structure exhibits stripes of alternating high and low induction. Magnetic domains easily cross grain boundaries if neighboring grains have a similar tilt and rotation of their crystallographic axes relative to the magnet body. In contrast for alnico 9, stripe-like magnetic domains are not observed regularly throughout the transverse section; rather, discrete localization of high- and low-induction stripe features are observed. In higher magnification MOKE experiments, i.e., ~100 μm, a zigzag-shaped magnetic domain structure was observed in both alnico 5–7 and 9. The zigzag features are four to five times smaller in size than an average grain of alnico 5–7, implying a pinning mechanism that is caused by structural elements within the grains. Discontinuous and reversible motion on a length scale of a few microns was observed for the zigzag-shaped domains for incremental changes in the applied field of ~10 Oe. Complimentary magnetic force microscopy measurements show that there are domain structures on an even smaller scale, i.e., 2 μm to 100 μm.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. 1.

    B.D. Cullity and C.D. Graham, Introduction to Magnetic Materials, 2nd ed. (New York: Wiley-IEEE Press, 2008).

    Book  Google Scholar 

  2. 2.

    Critical Materials Strategy, U.S. DOE, 2011, http://energy.gov/sites/prod/files/DOE_CMS2011_FINAL_Full.pdf.

  3. 3.

    Critical Materials for Sustainable Energy Applications, R. Institute, 2011, http://www.resnick.caltech.edu/news/Features/ri_criticalmaterials_report.pdf.

  4. 4.

    M.J. Kramer, R.W. McCallum, I.A. Anderson, and S. Constantinides, JOM 64, 752 (2012).

    Article  Google Scholar 

  5. 5.

    L.H. Lewis and F. Jimenez-Villacorta, Metall. Mater. Trans. A 44A, 2 (2013).

    Article  Google Scholar 

  6. 6.

    V.A.M. Brabers, Handbook of Magnetic Materials, vol. 8, ed. K.H. Buschow (Amsterdam: North-Holland, 1995), p. 189.

  7. 7.

    R.B. Campbell and C.A. Julien, J. Appl. Phys. 32, S346 (1961).

    Article  Google Scholar 

  8. 8.

    A.F. Andresen, W. Halg, P. Fischer, and E. Stoll, Acta Chem. Scand. 21, 1543 (1967).

    Article  Google Scholar 

  9. 9.

    J.M.D. Coey and P.A.I. Smith, J. Magn. Magn. Mater. 200, 405 (1999).

    Article  Google Scholar 

  10. 10.

    R.B. Campbell and C.A. Julien, J. Appl. Phys. 32, S192 (1961).

    Article  Google Scholar 

  11. 11.

    J.J. Mason, D.W. Ashall, and A.V. Dean, IEEE Trans. Magn. Mag. 6, 191 (1970).

    Article  Google Scholar 

  12. 12.

    E.A. Nesbitt and H.J. Williams, Phys. Rev. 80, 112 (1950).

    Article  Google Scholar 

  13. 13.

    C.A. Julien and F.G. Jones, J. Appl. Phys. 36, 1173 (1965).

    Article  Google Scholar 

  14. 14.

    A.H. Geisler, Trans. ASM 43, 70 (1951).

    Google Scholar 

  15. 15.

    J.W. Cahn, Acta Metall. Mater. 9, 795 (1961).

    Article  Google Scholar 

  16. 16.

    J.W. Cahn, J. Appl. Phys. 34, 3581 (1963).

    Article  Google Scholar 

  17. 17.

    P. Pashkov, A. Fridman, E. Granovsky, V. Sergeyev, and R. Larichki, J. Appl. Phys. 40, 1308 (1969).

    Article  Google Scholar 

  18. 18.

    H.C. Angus, J.J. Mason, and S.W.K. Shaw, Metallurgia 82, 127 (1970).

    Google Scholar 

  19. 19.

    S. Hao, K. Ishida, and T. Nishizawa, Metall. Trans. A 16, 179 (1985).

    Google Scholar 

  20. 20.

    S.A. Cowley, M.G. Hetherington, J.P. Jakubovics, and G.D.W. Smith, J. Phys. Paris 47, 211 (1986).

    Article  Google Scholar 

  21. 21.

    M.G. Hetherington, A. Cerezo, J. Hyde, G.D.W. Smith, and G.M. Worrall, J. Phys. Paris 47, 495 (1986).

    Article  Google Scholar 

  22. 22.

    M.G. Hetherington, G.D.W. Smith, and J.P. Jakubovics, Metall. Trans. A 17, 1629 (1986).

    Article  Google Scholar 

  23. 23.

    M.G. Hetherington, A. Cerezo, J.P. Jakubovics, and G.D.W. Smith, J. Appl. Phys. 57, 4173 (1985).

    Article  Google Scholar 

  24. 24.

    M.G. Hetherington, A. Cerezo, J.P. Jakubovics, and G.D.W. Smith, J. Phys. Paris 45, 429 (1984).

    Article  Google Scholar 

  25. 25.

    J.J. Wyslocki and B. Wyslocki, J. Magn. Magn. Mater. 83, 225 (1990).

    Article  Google Scholar 

  26. 26.

    R. Skomski, Y. Liu, J.E. Shield, G.C. Hadjipanayis, and D.J. Sellmyer, J. Appl. Phys. 107 09A739 (2010).

  27. 27.

    J.F. Herbst, Rev. Mod. Phys. 63, 819 (1991).

    Article  Google Scholar 

  28. 28.

    J.A. Krizan and S.D. Sudhoff, IEEE. (2012). doi:10.1109/PESGM.2012.6345224.

  29. 29.

    C. Kittel, E.A. Nesbitt, and W. Shockley, Phys. Rev. 77, 839 (1950).

    Article  Google Scholar 

  30. 30.

    J.J. Kim, H.S. Park, D. Shindo, S. Hirosawa, and H. Morimoto, Mater. Trans. 47, 907 (2006).

    Article  Google Scholar 

  31. 31.

    Q. Xing, M.K. Miller, L. Zhou, H.M. Dillon, R.W. McCallum, I.E. Anderson, S. Constantinides, and M.J. Kramer, IEEE Trans. Magn. In press.

  32. 32.

    L. Zhou and M.J. Kramer, in preparation.

Download references

Acknowledgements

We are greatly indebted to Fran Laabs (Ames Laboratory) for OIM data collection and assistance in data analysis. This work was supported by the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy (EERE), under its Vehicle Technologies Program, through the Ames Laboratory. The Ames Laboratory is operated by Iowa State University under Contract DE-AC02-07CH11358.

Author information

Affiliations

Authors

Corresponding author

Correspondence to I. E. Anderson.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Palasyuk, A., Blomberg, E., Prozorov, R. et al. Advances in Characterization of Non-Rare-Earth Permanent Magnets: Exploring Commercial Alnico Grades 5–7 and 9. JOM 65, 862–869 (2013). https://doi.org/10.1007/s11837-013-0618-z

Download citation

Keywords

  • Domain Wall
  • Magnetic Domain
  • Magnetic Force Microscopy
  • Orientation Imaging Microscopy
  • Magnetic Domain Structure