, Volume 65, Issue 7, pp 862–869 | Cite as

Advances in Characterization of Non-Rare-Earth Permanent Magnets: Exploring Commercial Alnico Grades 5–7 and 9

  • A. Palasyuk
  • E. Blomberg
  • R. Prozorov
  • L. Yue
  • M. J. Kramer
  • R. W. Mccallum
  • I. E. Anderson
  • S. Constantinides


The magnetic domain structure of commercial alnico grades 5–7 and 9 was investigated using a magneto-optical Kerr effect (MOKE) to gain an understanding of their coercivity mechanisms at the micron to millimeter scale. In alnico 5–7, the magnetic domain structure exhibits stripes of alternating high and low induction. Magnetic domains easily cross grain boundaries if neighboring grains have a similar tilt and rotation of their crystallographic axes relative to the magnet body. In contrast for alnico 9, stripe-like magnetic domains are not observed regularly throughout the transverse section; rather, discrete localization of high- and low-induction stripe features are observed. In higher magnification MOKE experiments, i.e., ~100 μm, a zigzag-shaped magnetic domain structure was observed in both alnico 5–7 and 9. The zigzag features are four to five times smaller in size than an average grain of alnico 5–7, implying a pinning mechanism that is caused by structural elements within the grains. Discontinuous and reversible motion on a length scale of a few microns was observed for the zigzag-shaped domains for incremental changes in the applied field of ~10 Oe. Complimentary magnetic force microscopy measurements show that there are domain structures on an even smaller scale, i.e., 2 μm to 100 μm.


Domain Wall Magnetic Domain Magnetic Force Microscopy Orientation Imaging Microscopy Magnetic Domain Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We are greatly indebted to Fran Laabs (Ames Laboratory) for OIM data collection and assistance in data analysis. This work was supported by the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy (EERE), under its Vehicle Technologies Program, through the Ames Laboratory. The Ames Laboratory is operated by Iowa State University under Contract DE-AC02-07CH11358.


  1. 1.
    B.D. Cullity and C.D. Graham, Introduction to Magnetic Materials, 2nd ed. (New York: Wiley-IEEE Press, 2008).CrossRefGoogle Scholar
  2. 2.
    Critical Materials Strategy, U.S. DOE, 2011,
  3. 3.
    Critical Materials for Sustainable Energy Applications, R. Institute, 2011,
  4. 4.
    M.J. Kramer, R.W. McCallum, I.A. Anderson, and S. Constantinides, JOM 64, 752 (2012).CrossRefGoogle Scholar
  5. 5.
    L.H. Lewis and F. Jimenez-Villacorta, Metall. Mater. Trans. A 44A, 2 (2013).CrossRefGoogle Scholar
  6. 6.
    V.A.M. Brabers, Handbook of Magnetic Materials, vol. 8, ed. K.H. Buschow (Amsterdam: North-Holland, 1995), p. 189.Google Scholar
  7. 7.
    R.B. Campbell and C.A. Julien, J. Appl. Phys. 32, S346 (1961).CrossRefGoogle Scholar
  8. 8.
    A.F. Andresen, W. Halg, P. Fischer, and E. Stoll, Acta Chem. Scand. 21, 1543 (1967).CrossRefGoogle Scholar
  9. 9.
    J.M.D. Coey and P.A.I. Smith, J. Magn. Magn. Mater. 200, 405 (1999).CrossRefGoogle Scholar
  10. 10.
    R.B. Campbell and C.A. Julien, J. Appl. Phys. 32, S192 (1961).CrossRefGoogle Scholar
  11. 11.
    J.J. Mason, D.W. Ashall, and A.V. Dean, IEEE Trans. Magn. Mag. 6, 191 (1970).CrossRefGoogle Scholar
  12. 12.
    E.A. Nesbitt and H.J. Williams, Phys. Rev. 80, 112 (1950).CrossRefGoogle Scholar
  13. 13.
    C.A. Julien and F.G. Jones, J. Appl. Phys. 36, 1173 (1965).CrossRefGoogle Scholar
  14. 14.
    A.H. Geisler, Trans. ASM 43, 70 (1951).Google Scholar
  15. 15.
    J.W. Cahn, Acta Metall. Mater. 9, 795 (1961).CrossRefGoogle Scholar
  16. 16.
    J.W. Cahn, J. Appl. Phys. 34, 3581 (1963).CrossRefGoogle Scholar
  17. 17.
    P. Pashkov, A. Fridman, E. Granovsky, V. Sergeyev, and R. Larichki, J. Appl. Phys. 40, 1308 (1969).CrossRefGoogle Scholar
  18. 18.
    H.C. Angus, J.J. Mason, and S.W.K. Shaw, Metallurgia 82, 127 (1970).Google Scholar
  19. 19.
    S. Hao, K. Ishida, and T. Nishizawa, Metall. Trans. A 16, 179 (1985).Google Scholar
  20. 20.
    S.A. Cowley, M.G. Hetherington, J.P. Jakubovics, and G.D.W. Smith, J. Phys. Paris 47, 211 (1986).CrossRefGoogle Scholar
  21. 21.
    M.G. Hetherington, A. Cerezo, J. Hyde, G.D.W. Smith, and G.M. Worrall, J. Phys. Paris 47, 495 (1986).CrossRefGoogle Scholar
  22. 22.
    M.G. Hetherington, G.D.W. Smith, and J.P. Jakubovics, Metall. Trans. A 17, 1629 (1986).CrossRefGoogle Scholar
  23. 23.
    M.G. Hetherington, A. Cerezo, J.P. Jakubovics, and G.D.W. Smith, J. Appl. Phys. 57, 4173 (1985).CrossRefGoogle Scholar
  24. 24.
    M.G. Hetherington, A. Cerezo, J.P. Jakubovics, and G.D.W. Smith, J. Phys. Paris 45, 429 (1984).CrossRefGoogle Scholar
  25. 25.
    J.J. Wyslocki and B. Wyslocki, J. Magn. Magn. Mater. 83, 225 (1990).CrossRefGoogle Scholar
  26. 26.
    R. Skomski, Y. Liu, J.E. Shield, G.C. Hadjipanayis, and D.J. Sellmyer, J. Appl. Phys. 107 09A739 (2010).Google Scholar
  27. 27.
    J.F. Herbst, Rev. Mod. Phys. 63, 819 (1991).CrossRefGoogle Scholar
  28. 28.
    J.A. Krizan and S.D. Sudhoff, IEEE. (2012). doi: 10.1109/PESGM.2012.6345224.
  29. 29.
    C. Kittel, E.A. Nesbitt, and W. Shockley, Phys. Rev. 77, 839 (1950).CrossRefGoogle Scholar
  30. 30.
    J.J. Kim, H.S. Park, D. Shindo, S. Hirosawa, and H. Morimoto, Mater. Trans. 47, 907 (2006).CrossRefGoogle Scholar
  31. 31.
    Q. Xing, M.K. Miller, L. Zhou, H.M. Dillon, R.W. McCallum, I.E. Anderson, S. Constantinides, and M.J. Kramer, IEEE Trans. Magn. In press.Google Scholar
  32. 32.
    L. Zhou and M.J. Kramer, in preparation.Google Scholar

Copyright information

© TMS (outside the USA) 2013

Authors and Affiliations

  • A. Palasyuk
    • 1
    • 2
  • E. Blomberg
    • 3
  • R. Prozorov
    • 2
    • 3
  • L. Yue
    • 5
  • M. J. Kramer
    • 1
    • 2
  • R. W. Mccallum
    • 1
    • 2
  • I. E. Anderson
    • 1
    • 2
  • S. Constantinides
    • 4
  1. 1.Department of Material Science and EngineeringIowa State UniversityAmesUSA
  2. 2.Ames Laboratory, U.S. Department of EnergyIowa State UniversityAmesUSA
  3. 3.Department of Physics and AstronomyIowa State UniversityAmesUSA
  4. 4.Arnold Magnetic Technologies CorporationRochesterUSA
  5. 5.Nebraska Center for Materials and NanoscienceUniversity of NebraskaLincolnUSA

Personalised recommendations