Skip to main content

Advertisement

Log in

Layer-by-Layer Enabled Nanomaterials for Chemical Sensing and Energy Conversion

  • Published:
JOM Aims and scope Submit manuscript

Abstract

The layer-by-layer (LbL) technique is a wet chemical method for the assembly of ultrathin films, with thicknesses up to 100 nm. This method is based on the successive transfer of molecular layers to a solid substrate that is dipped into cationic and anionic solutions in an alternating fashion. The adsorption is mainly driven by electrostatic interactions so that many molecular and nanomaterial systems can be engineered under this method. Moreover, it is inexpensive, can be easily performed, and does not demand sophisticated equipment or clean rooms. The most explored use of the LbL technique is to build up molecular devices for chemical sensing and energy conversion. Both applications require ultrathin films where specific elements must be organized with high control of thickness and spatial distribution, preferably in the nanolength and mesolength scales. In chemical sensors, the LbL technique is employed to assemble specific sensoactive materials such as conjugated polymers, enzymes, and immunological elements onto appropriated electrodes. Molecular recognition events are thus transduced by the assembled sensoactive layer. In energy-conversion devices, the LbL technique can be employed to fabricate different device’s parts including electrodes, active layers, and auxiliary layers. In both applications, the devices’ performance can be fully modulated and improved by simply varying film thickness and molecular architecture. The present review article highlights the main features of the LbL technique and provides a brief description of different (bio)chemical sensors, solar cells, and organic light-emitting diodes enabled by the LbL approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. C.M. Petty and R.M. Bryce, David Bloor: An Introduction to Molecular Electronics (New York, NY: Oxford University Press, 1995).

    Google Scholar 

  2. Ossila Fabrication System for OLEDs, Organic Photovoltaics and a Variety of Other Research Devices, http://www.ossila.com/downloads/OLEDOPV_Fabrication_system.pdf.

  3. K. Patel, Materials Matters, Organic and Molecular Electronics, vol. 4 ( St. Louis, MO: Sigma-Aldrich Chemical Co., 2009).

  4. DyeSol Product Catalogue 2011, http://www.dyesol.com/download/Catalogue.pdf.

  5. Solaronix Catalog 2012, http://www.solaronix.com/catalog/solaronix_catalog.pdf.

  6. A. Ulman, An Introduction to Ultrathin Films: From Langmuir-Blodgett to Self-Assembly (Boston, MA: Academic Press, 1991).

    Google Scholar 

  7. K. Blodgett, J. Am. Chem. Soc. 57, 1007 (1935).

    Article  Google Scholar 

  8. P. Dynarowicz-Latka, A. Dhanabalan, and O.N. Oliveira, Adv. Coll. Interf. Sci. 91, 221 (2001).

    Article  Google Scholar 

  9. A. Ulman, Chem. Rev. 96, 1533 (1996).

    Article  Google Scholar 

  10. V.P.N. Geraldo, F.J. Pavinatto, T.M. Nobre, L. Caseli, and O.N. Oliveira, Chem. Phys. Lett. 559, 99 (2013).

    Article  Google Scholar 

  11. J. Cancino, T.M. Nobre, O.N. Oliveira, S.A.S. Machado, and V. Zucolotto, Nanotoxicology 7, 61 (2013).

    Article  Google Scholar 

  12. G. Decher, Science 277, 1232 (1997).

    Article  Google Scholar 

  13. R.K. Iller, J. Coll. Interf. Sci. 21, 569 (1966).

    Article  Google Scholar 

  14. G. Decher, J.D. Hong, and J. Schmitt, Thin Solid Films 210, 831 (1992).

    Article  Google Scholar 

  15. P.T. Hammond, Adv. Mater. 16, 1271 (2004).

    Article  Google Scholar 

  16. L.G. Paterno, O.N. Oliveira, and L.H.C. Mattoso, Quím. Nova 24, 228 (2001).

    Article  Google Scholar 

  17. J.B. Schelenoff, H. Ly, and M. Li, J. Am. Chem. Soc. 120, 7626 (1998).

    Article  Google Scholar 

  18. M.A.G. Soler, L.G. Paterno, and P.C. Morais, J. Nanofluids 1, 101 (2012).

    Article  Google Scholar 

  19. L.G. Paterno and L.H.C. Mattoso, Polymer 42, 5239 (2001).

    Article  Google Scholar 

  20. G.B. Alcantara, L.G. Paterno, A.S. Afonso, R.C. Faria, M.A. Pereira-da-Silva, P.C. Morais, and M.A.G. Soler, Phys. Chem. Chem. Phys. 13, 21233 (2011).

    Article  Google Scholar 

  21. G.S. Braga, L.G. Paterno, J.P.H. Lima, F.J. Fonseca, and A.M. de Andrade, Mater. Sci. Eng. C 28, 555 (2008).

    Article  Google Scholar 

  22. A. Hulanicki, S. Geab, and F. Ingman, Pure Appl. Chem. 63, 1247 (1991).

    Article  Google Scholar 

  23. M.E. Khamseh, M. Ansari, M. Malek, G. Shafiee, and H. Baradaran, J. Diabetes Sci. Technol. 5, 388 (2011).

    Google Scholar 

  24. N. Barsan, D. Koziej, and U. Weimar, Sens. Actuators, B 121, 18 (2007).

    Article  Google Scholar 

  25. E.S. Medeiros, L.G. Paterno, and L.H.C. Mattoso, Encyclopedia of Sensors, vol. 9, ed. C.A. Grimes, E.C. Dickey, and M.V. Pishko (Stevenson Ranch, CA: American Scientific Publishers, 2006), pp. 75–110.

  26. A.G. MacDiarmid, Synth. Met. 125, 11 (2001).

    Article  Google Scholar 

  27. A.G. MacDiarmid, Synth. Met. 84, 27 (1997).

    Article  Google Scholar 

  28. D.R. Thévenot, K. Toth, R.A. Durst, and G.S. Wilson, Pure Appl. Chem. 71, 2333 (1999).

    Article  Google Scholar 

  29. M. Riskin, B. Basnar, Y. Huang, and I. Willner, Adv. Mater. 19, 2691 (2007).

    Article  Google Scholar 

  30. K.J. Albert, N.S. Lewis, C.L. Schauer, G.A. Sotzing, S.E. Stitzel, T.P. Vaid, and D.R. Walt, Chem. Rev. 100, 2595 (2000).

    Article  Google Scholar 

  31. Y. Vlasov, A. Legin, A. Rudnitskaya, C. Di Natale, and A. D’Amico, Pure Appl. Chem. 77, 1965 (2005).

    Article  Google Scholar 

  32. M.E. Saltveit, Physiol. Plant. 89, 204 (1993).

    Article  Google Scholar 

  33. L.G. Paterno and L.H.C. Mattoso, J. Appl. Polym. Sci. 83, 1309 (2002).

    Article  Google Scholar 

  34. A. Riul, D.S. dos Santos, K. Wohnrath, R. Di Tommazo, A.C.P.L.F. Carvalho, F.J. Fonseca, O.N. Oliveira, D.M. Taylor, and L.H.C. Mattoso, Langmuir 18, 239 (2002).

    Google Scholar 

  35. D.S. dos Santos, A. Riul, R.R. Malmegrim, F.J. Fonseca, O.N. Oliveira, and L.H.C. Mattoso, Macromol. Biosci. 3, 591 (2003).

    Article  Google Scholar 

  36. P.H.B. Aoki, D. Volpati, A. Riul, W. Caetano, and C.J.L. Constantino, Langmuir 25, 2331 (2009).

    Article  Google Scholar 

  37. A. Riul, H.C. de Sousa, R.R. Malmegrim, D.S. dos Santos, A.C.P.L.F. Carvalho, F.J. Fonseca, O.N. Oliveira, and L.H.C. Mattoso, Sens. Actuators B 98, 77 (2004).

    Google Scholar 

  38. D.S. Dyminski, L.G. Paterno, H.H. Takeda, H.M.A. Bolini, L.H.C. Mattoso, and L.M.B. Cândido, Sensor Lett. 4, 403 (2006).

    Article  Google Scholar 

  39. G.S. Braga, L.G. Paterno, and F.J. Fonseca, Sens. Actuators, B 171, 181 (2012).

    Article  Google Scholar 

  40. A.L. Garçom Jr., F.J. Fonseca, and L.G. Paterno, Sensor Lett. 10, 866 (2012).

    Article  Google Scholar 

  41. G.B. Alcântara, L.G. Paterno, F.J. Fonseca, P.C. Morais, and M.A.G. Soler, J. Magn. Magn. Mater. 323, 1372 (2011).

    Article  Google Scholar 

  42. L.G. Paterno, M.A.G. Soler, F.J. Fonseca, J.P. Sinnecker, E.H.C.P. Sinnecker, E.C.D. Lima, S.N. Báo, M.A. Novak, and P.C. Morais, J. Nanosci. Nanotech. 10, 2679 (2010).

    Article  Google Scholar 

  43. L.G. Paterno, F.J. Fonseca, G.B. Alcantara, M.A.G. Soler, P.C. Morais, J.P. Sinnecker, M.A. Novak, E.C.D. Lima, F.L. Leite, and L.H.C. Mattoso, Thin Solid Films 517, 1753 (2009).

    Article  Google Scholar 

  44. L.G. Paterno, M.A.G. Soler, F.J. Fonseca, J.P. Sinnecker, E.H.C.P. Sinnecker, E.C.D. Lima, M.A. Novak, and P.C. Morais, J. Phys. Chem. C 113, 5087 (2009).

    Article  Google Scholar 

  45. M.A.G. Soler, L.G. Paterno, J.P. Sinnecker, J.G. Wen, E.H.C.P. Sinnecker, R.F. Neumann, M. Bahiana, M.A. Novak, and P.C. Morais, J. Nanopart. Res. 14, 653 (2012).

    Article  Google Scholar 

  46. L.G. Paterno, E.H.C.P. Sinnecker, M.A.G. Soler, J.P. Sinnecker, M.A. Novak, and P.C. Morais, J. Nanosci. Nanotechnol. 12, 6672 (2012).

    Article  Google Scholar 

  47. G.B. Alcantara, L.G. Paterno, F.J. Fonseca, M.A. Pereira-da-Silva, P.C. Morais, and M.A.G. Soler, J. Nanofluids. 3, (2013).

  48. R.M. Iost and F.N. Crespilho, Biosens. Bioelectron. 31, 1 (2012).

    Article  Google Scholar 

  49. K. Ariga, T. Nakanishi, and T. Michinobu, J. Nanosci. Nanotechnol. 6, 2278 (2006).

    Article  Google Scholar 

  50. T. Hoshi, J.-I. Anzai, and T. Osa, Anal. Chem. 67, 770 (1995).

    Article  Google Scholar 

  51. J. Hodak, R. Etchenique, E.J. Calvo, K. Singhal, and P.N. Bartlett, Langmuir 13, 2708 (1997).

    Article  Google Scholar 

  52. M. Gerard, A. Chaubey, and B.D. Malhotra, Biosens. Bioelectron. 17, 345 (2002).

    Article  Google Scholar 

  53. A. Merkoci, Electroanalysis 25, 5 (2013).

    Article  Google Scholar 

  54. J. Wang, Electroanalysis 17, 7 (2005).

    Article  Google Scholar 

  55. V. Zucolotto, A.P.A. Pinto, T. Tumolo, M.L. Moraes, M.S. Baptista, A. Riul, A.P.U. Araujo, and O.N. Oliveira, Biosens. Bioelectron. 21, 1320 (2006).

    Article  Google Scholar 

  56. V. Zucolotto, K.R.P. Daghastanli, C.O. Hayasaka, A. Riul, P. Ciancaglini, and O.N. Oliveira, Anal. Chem. 79, 2163 (2007).

    Article  Google Scholar 

  57. A.C. Perinoto, R.M. Maki, M.C. Colhone, F.R. Santos, V. Migliaccio, K.R. Daghastanli, R.G. Stabeli, P. Ciancaglini, F.V. Paulovich, M.C.F. de Oliveira, O.N. Oliveira, and V. Zucolotto, Anal. Chem. 82, 9763 (2010).

    Article  Google Scholar 

  58. V. Zucolotto, M. Ferreira, M.R. Cordeiro, C.J.L. Constantino, W.C. Moreira, and O.N. Oliveira, Sens. Actuators, B 113, 809 (2006).

    Article  Google Scholar 

  59. M.K. Ram, O. Yavuz, V. Lahsangah, and M. Aldissi, Sens. Actuators, B 106, 750 (2005).

    Article  Google Scholar 

  60. L. Bi, H. Wang, Y. Shen, E. Wang, and S. Dong, Electrochem. Commun. 5, 913 (2003).

    Article  Google Scholar 

  61. S. Tian, A. Baba, J. Liu, Z. Wang, W. Knoll, M.-K. Park, and R. Advincula, Adv. Funct. Mater. 13, 73 (2003).

    Article  Google Scholar 

  62. L. Qian, Q. Gao, Y. Song, Z. Li, and X. Yang, Sens. Actuators, B 107, 303 (2005).

    Article  Google Scholar 

  63. A. Yu, Z. Liang, J. Cho, and F. Caruso, Nano Lett. 3, 1203 (2003).

    Article  Google Scholar 

  64. P. He and M. Bayachou, Langmuir 21, 6086 (2005).

    Article  Google Scholar 

  65. N.S. Lewis and D.G. Nocera, Proc. Natl. Acad. Sci. USA 103, 15729 (2006).

    Article  Google Scholar 

  66. P.V. Kamat, J. Phys. Chem. C 111, 2834 (2007).

    Article  Google Scholar 

  67. S.J. Fonash, Solar Cell Device Physics, 2nd ed. (Burlington, MA: Academic Press, 2010).

    Google Scholar 

  68. H. Hoppe and N.S. Sariciftci, J. Mater. Res. 19, 1924 (2004).

    Article  Google Scholar 

  69. F.C. Krebbs, J. Fyenbo, and M. Jørgensen, J. Mater. Chem. 20, 8994 (2010).

    Article  Google Scholar 

  70. H. Mattoussi, M.F. Rubner, F. Zhou, J. Kumar, S.K. Tripathy, and L.Y. Chiang, Appl. Phys. Lett. 77, 1540 (2000).

    Article  Google Scholar 

  71. D.M. Guldi, C. Luo, D. Koktysh, N.A. Kotov, T. Da Ros, S. Bosi, and M. Prato, Nano Lett. 2, 775 (2002).

    Article  Google Scholar 

  72. M. Gratzel, Acc. Chem. Res. 42, 1788 (2009).

    Article  Google Scholar 

  73. A. Yella, H.-W. Lee, H.N. Tsao, C. Yi, A.K. Chandiran, Md.K. Nazeeruddin, E.W.-G. Diau, C.-Y. Yeh, S.M Zakeeruddin, and M. Grätzel, Science 334, 629 (2011).

    Google Scholar 

  74. J.A. He, R. Mosurkal, L.A. Samuelson, L. Li, and J. Kumar, Langmuir 19, 2169 (2003).

    Article  Google Scholar 

  75. S. Takenaka, Y. Maehara, H. Imai, M. Yoshikawa, and S. Shiratori, Thin Solid Films 438, 346 (2003).

    Article  Google Scholar 

  76. G.M. Lowman and P.T. Hammond, Small 1, 1070 (2005).

    Article  Google Scholar 

  77. H. Tokuhisa and P.T. Hammond, Adv. Funct. Mater. 13, 831 (2003).

    Article  Google Scholar 

  78. A.O.T. Patrocinio, L.G. Paterno, and N.Y.M. Iha, J. Photochem. Photobiol. A: Chem. 205, 23 (2009).

    Article  Google Scholar 

  79. A.O.T. Patrocinio, L.G. Paterno, and N.Y.M. Iha, J. Phys. Chem. C 114, 17954 (2010).

    Article  Google Scholar 

  80. A.O.T. Patrocinio, A.S. El-Bacha, E.B. Paniago, R.M. Paniago, and N.Y.M. Iha, Int. J. Photoenergy 2012, ID: 638571.

  81. T. Tsujimura, OLED Display Fundamentals and Applications (New York: Wiley, 2012).

    Book  Google Scholar 

  82. S.A. Van Slyke, C.H. Chen, and C.W. Tang, Appl. Phys. Lett. 69, 2160 (1996).

    Article  Google Scholar 

  83. M. Onoda and K. Yoshino, J. Appl. Phys. 78, 4456 (1995).

    Article  Google Scholar 

  84. A.C. Fou, O. Onitsuka, M. Ferreira, M.F. Rubner, and B.R. Hsieh, J. Appl. Phys. 79, 7501 (1996).

    Article  Google Scholar 

  85. O. Onitsuka, A.C. Fou, M. Ferreira, B.R. Hsieh, and M.F. Rubner, J. Appl. Phys. 80, 4067 (1996).

    Article  Google Scholar 

  86. J.C.B. Santos, L.G. Paterno, E.A.T. Dirani, F.J. Fonseca, and A.M. de Andrade, Thin Solid Films 516, 3184 (2008).

    Article  Google Scholar 

  87. G. Santos, L.G. Paterno, F.J. Fonseca, A.M. de Andrade, and L. Pereira, ECS Trans. 39, 307 (2011).

    Article  Google Scholar 

  88. A. Wu, D. Yoo, J.-K. Lee, and M.F. Rubner, J. Am. Chem. Soc. 121, 4883 (1999).

    Article  Google Scholar 

  89. J.-K. Lee, D.S. Yoo, E.S. Handy, and M.F. Rubner, Appl. Phys. Lett. 69, 1686 (1996).

    Article  Google Scholar 

Download references

Acknowledgements

The financial support from the Brazilian agencies CNPq, FAP-DF, FINEP, CAPES, and FINATEC are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonardo G. Paterno.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paterno, L.G., Soler, M.A.G. Layer-by-Layer Enabled Nanomaterials for Chemical Sensing and Energy Conversion. JOM 65, 709–719 (2013). https://doi.org/10.1007/s11837-013-0608-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-013-0608-1

Keywords

Navigation