Skip to main content
Log in

Synthesis of Spinel-Structure CuFe2O4 Nanoparticles and Their Effective Electrocatalysis Properties

  • Published:
JOM Aims and scope Submit manuscript

Abstract

A series of CuFe2O4 nanoparticles was synthesized with the assistance of organic amines or inorganic bases via a hydrothermal method. The prepared samples were confirmed as a spinel-type structure by x-ray diffraction. The shapes of the samples were detected by transmission electron microscope (TEM), which confirmed that all the synthesized samples were nanoparticles. The electrocatalytic properties of the samples modified on a glassy carbon electrode were investigated for the reduction of p-nitrophenol, potassium chromate (K2CrO4), and sodium nitrite (NaNO2) in basic solution using the cyclic voltammetry method. The results showed that all the samples showed enhanced catalytic activity for the reduction of p-nitrophenol, K2CrO4, and NaNO2. Among the samples, CuFe2O4 prepared with cyclohexylamine (S-2) showed the highest catalytic activity for p-nitrophenol reduction, whereas CuFe2O4 prepared with NaOH and PVP (S-4) showed the highest activity for both K2CrO4 and NaNO2 reduction in basic solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. T. Zeng, W. Chen, C.M. Cirtiu, A. Moores, G. Song, and C. Li, Green Chem. 12, 570 (2010).

    Article  Google Scholar 

  2. C. Martos, J. Dufour, and A. Ruiz, Int. J. Hydrogen Energ. 34, 4475 (2009).

    Article  Google Scholar 

  3. H. Firouzabadi, N. Iranpoor, M. Gholinejad, and J. Hoseini, Adv. Synth. Catal. 353, 125 (2011).

    Article  Google Scholar 

  4. M. Bomio, P. Lavela, and J.L. Tirado, J. Solid State Electrochem. 12, 729 (2008).

    Article  Google Scholar 

  5. K. Sone, S. Sekiguchi, H. Naganuma, T. Miyazaki, T. Nakajima, and S. Okamura, J. Appl. Phys. 111, 124101 (2012).

    Article  Google Scholar 

  6. H. Yang, X. Zhang, W. Ao, and G. Qiu, Mater. Res. Bull. 39, 833 (2004).

    Article  Google Scholar 

  7. W. Jiang, Z. Cao, R. Gu, X. Ye, C. Jiang, and X. Gong, Smart Mater. Struct. 18, 125013 (2009).

    Article  Google Scholar 

  8. N.S. Gajbhiye and G. Balaji, Thermochim. Acta 385, 143 (2002).

    Article  Google Scholar 

  9. Y. Shi, J. Ding, Z.X. Shen, W.X. Sun, and L. Wang, Solid State Commun. 115, 237 (2000).

    Article  Google Scholar 

  10. J.S. Jang, S.J. Hong, and J.S. Lee, J. Korean Phys. Soc 54, 204 (2009).

    Article  Google Scholar 

  11. N.M. Deraz and A. Alarifi, Int. J. Electrochem. Sci. 7, 5534 (2012).

    Google Scholar 

  12. S.F. Rus, P. Vlazan, S. Novaconi, P. Sfirloaga, and I. Grozescu, J. Optoelectron. Adv. Mater. 3, 293 (2012).

    Google Scholar 

  13. Q. Liu, J. Sun, H. Long, X. Sun, X. Zhong, and Z. Xu, Mater. Chem. Phys. 108, 269 (2008).

    Article  Google Scholar 

  14. Q. Liu, H. Huang, L. Lai, J. Sun, T. Shang, Q. Zhou, and Z. Xu, J. Mater. Sci. 44, 1187 (2009).

    Article  Google Scholar 

  15. S.-H. Yu, T. Fujino, and M. Yoshimura, J. Magn. Magn. Mater. 256, 420 (2003).

    Article  Google Scholar 

  16. C. Munteanu, M. Caldararu, D. Gingasu, M. Feder, L. Diamandescu, and N.I. Ionescu, Reac. Kinet. Mech. Cat. 104, 357 (2011).

    Article  Google Scholar 

  17. M. Faraji, Y. Yamini, and M. Rezaee, J. Iran Chem. Soc. 7, 1 (2010).

    Article  Google Scholar 

  18. Z. Sun, L. Liu, D. Jia, and W. Pan, Sens. Actuat. B 125, 144 (2007).

    Article  Google Scholar 

  19. S. Kameoka, T. Toyokazu, and A.P. Tsai, Catal. Lett. 100, 89 (2005).

    Article  Google Scholar 

  20. S.S. Ata-Allah, F.M. Sayedahmed, M. Kaiser, and A.M. Hashhash, J. Mater. Sci. 40, 2923 (2005).

    Article  Google Scholar 

  21. M. Sultan and R. Singh, Mater. Lett. 63, 1764 (2009).

    Article  Google Scholar 

  22. S.D. Sartale and C.D. Lokhande, Mater. Chem. Phys. 70, 274 (2001).

    Article  Google Scholar 

  23. M. Banerjee and A. Rai, J. Nanosci. Nanotechnol. 7, 1990 (2007).

    Article  Google Scholar 

  24. J. Zhao, Y. Cheng, X. Yan, D. Sun, F. Zhu, and Q. Xue, CrystEngComm 14, 5879 (2012).

    Article  Google Scholar 

  25. R.K. Selvan, C.O. Augustin, C. Sanjeeviraja, V.G. Pol, and A. Gedanken, Mater. Chem. Phys. 99, 109 (2006).

    Article  Google Scholar 

  26. R.K. Selvan, V. Krishnan, C.O. Augustin, H. Bertagnolli, C.S. Kim, and A. Gedanken, Chem. Mater. 20, 429 (2008).

    Article  Google Scholar 

Download references

Acknowledgements

This study was financed for the Nature Science Project No. KJ2011Z351 by the Advanced Education Agency of Anhui Province of China. The authors are grateful for the support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lu Pan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pan, L., Xu, B. Synthesis of Spinel-Structure CuFe2O4 Nanoparticles and Their Effective Electrocatalysis Properties. JOM 65, 695–701 (2013). https://doi.org/10.1007/s11837-013-0607-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-013-0607-2

Keywords

Navigation