Skip to main content
Log in

Characterization of Nanostructured and Ultrafine-Grain Aluminum-Silicon Claddings using the Nanoimpact Indentation Technique

  • Published:
JOM Aims and scope Submit manuscript

Abstract

The nanoimpact indentation technique is an emerging characterization technique that permits measurement of dynamic properties on a small scale. This article reports results on the characterization of nanostructured and ultrafine-grained Al-Si claddings using this technique. First, it was found that with this technique, the dynamic hardness of the material also becomes independent of the load, similar to nanoidentation, which yields to the concept of the existence of a dynamic true hardness. Second, the plasticity results have been compared to a strain-gradient plasticity model and have shown to deviate from the Nix-Gao model. Finally, a comparison between H/E and DH/E ratios has shown that the DH/E ratio correlates better with dry sliding wear results obtained for this material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. M. Bidmon, H. Valadon, R. Ebner, and J. Loeffler, Nanomaterial Roadmap 2015; 6th Framework Program. SWOT Analysis Concerning the Use of Nanomaterials in the Automotive Sector, 2005, pp. 1–14.

  2. A.H. Committee, ASM Handbook, 18, Friction, Lubrication and Wear Technology (Materials Park, OH: ASM International, 1992).

    Google Scholar 

  3. E.P. Becker, Tribol. Int. 37, 569 (2004).

    Article  Google Scholar 

  4. J. Clarke and A.D. Sarkar, Wear 54, 7 (1979).

    Article  Google Scholar 

  5. D.K. Dwivedi, J. Mater. Des. 31, 2517 (2010).

    Google Scholar 

  6. K.M. Jasim and E.S. Dwarakadasa, Wear 119, 119 (1987).

    Article  Google Scholar 

  7. M. Elmadagli, T. Perry, and A.T. Alpas, Wear 262, 79 (2007).

    Article  Google Scholar 

  8. A.D. Sarkar and J. Clarke, Wear 75, 71 (1982).

    Article  Google Scholar 

  9. M.A. Martinez, A. Martin, and J. Llorca, Scr. Metall. Mater. 28, 207 (1993).

    Article  Google Scholar 

  10. A. Bendijk, R. Delhez, L. Katgerman, Th.H. Keijser, E.J. Mittemeijer, and N.M. Van Der Pers, J. Mater. Sci. 15, 2803 (1980).

    Article  Google Scholar 

  11. S. Hegde and K. Prabhu, J. Mater. Sci. 43, 3009 (2008).

    Article  Google Scholar 

  12. A.S. Reddy, B.N.P. Bai, K.S.S. Murthy, and S.K. Biswas, Wear 171, 115 (1994).

    Article  Google Scholar 

  13. A. Leyland and A. Matthews, Wear 246, 1 (2000).

    Article  Google Scholar 

  14. J. Milligan, D.W. Heard, and M. Brochu, Appl. Surf. Sci. 256, 4009 (2010).

    Article  Google Scholar 

  15. J. Milligan, R. Gauvin, and M. Brochu, Philos. Mag. 2013. doi:10.1080/14786435.2013.777816.

  16. J. Milligan, R. Vintila, and M. Brochu, Mater. Sci. Eng. A 508, 43 (2009).

    Article  Google Scholar 

  17. J. Milligan, J.M. Shockley, R.R. Chromik, and M. Brochu, Tribol. Int. 2013 (submitted).

  18. G.I. Taylor, Proc. R. Soc. Lond. A 145, 362 (1934).

    Article  MATH  Google Scholar 

  19. W. Nix and H. Gao, J. Mech. Phys. Solids 46, 411 (1998).

    Article  MATH  Google Scholar 

  20. D. Goldbaum, J. Ajaja, R.R. Chromik, W. Wong, S. Yue, E. Irissou, and J.-G. Legaux, Mater. Sci. Eng. A 530, 253 (2011).

    Article  Google Scholar 

  21. G. Constantinides, C.A. Tweedie, N. Savva, J.F. Smith, and K.J. Van Vliet, Exp. Mech. 49, 511 (2009).

    Article  Google Scholar 

  22. Z.Q. Wang, I.J. Beyerlein, and R. Lesar, Philos. Mag. 87, 2263 (2007).

    Article  Google Scholar 

  23. P.S. Follansbee and U.F. Kocks, Acta Metall. 36, 81 (1988).

    Article  Google Scholar 

  24. S.R. Chen and G.T. Gray III, Metall. Mater. Trans. A 27A, 2994 (1996).

    Article  Google Scholar 

  25. K.W. McElhaney, J.J. Vlassak, and W.D. Nix, J. Mater. Res. 13, 1300 (1998).

    Article  Google Scholar 

  26. A. Leyland and A. Matthews, Surf. Coat. Technol. 177–178, 317 (2004).

    Article  Google Scholar 

  27. G.S. Fox-Rabinovich, S.C. Veldhuis, V.N. Scvorstov, and L.S. Dosbaeva, Thin Solid Films 469–470, 505 (2004).

    Article  Google Scholar 

  28. B.D. Beake, G.S. Fox-Rabinovich, S.C. Veldhuis, and S.R. Goodes, Surf. Coat. Technol. 203, 1919 (2009).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Brochu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arreguin-Zavala, J., Milligan, J., Davies, M.I. et al. Characterization of Nanostructured and Ultrafine-Grain Aluminum-Silicon Claddings using the Nanoimpact Indentation Technique. JOM 65, 763–768 (2013). https://doi.org/10.1007/s11837-013-0593-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-013-0593-4

Keywords

Navigation