Skip to main content
Log in

Materials Science Challenges in Radiocarbon Dating: The Case of Archaeological Plasters

  • Published:
JOM Aims and scope Submit manuscript

Abstract

Structural, compositional, and isotopic characterization techniques are critically important to help identify pristine materials that are suitable for accurate and precise radiocarbon dating. Lime plasters, cements, and mortars are ideal materials for establishing firm and secure dates in the archaeological record as human-constructed living surfaces and installations. However, the often complex composite structures of plasters and their susceptibility to diagenetic processes have impeded the development of a reliable and reproducible method to identify the best specimens for dating. In this article we present an overview of the plaster production process and the radiocarbon dating method. We explain how material characterization techniques and radiocarbon dating can be integrated to make progress toward the ultimate goal of relating radiocarbon concentrations with environmental, sample preparation, and/or diagenetic conditions in which the plaster existed. A key aspect of this strategy relies on implementing material characterization techniques in the field, during an excavation, to help establish the archaeological context in which datable material is recovered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. S. Bowman, Radiocarbon Dating. (Berkeley: University of California Press, 1990).

    Google Scholar 

  2. E. Boaretto, Isr. J. Earth Sci. 56, 207 (2007).

    Article  Google Scholar 

  3. E. Boaretto, Radiocarbon 51, 275 (2009).

    Google Scholar 

  4. P. Vandiver, Annu. Rev. Mater. Res. 31, 373 (2001).

    Article  Google Scholar 

  5. P. Reimer et al., Radiocarbon 51, 1111 (2009).

    Google Scholar 

  6. J. Heinemeier, H. Jungner, A. Lindroos, Å. Ringbom, T. von Konow, and N. Rud, Nucl. Instr. Methods Phys. Res. B 123, 487 (1997).

    Article  Google Scholar 

  7. J. Hale, J. Heinemeier, L. Lancaster, A. Lindroos, and Å. Ringbom, Am. Scientist 91, 130 (2003).

    Article  Google Scholar 

  8. M. Van Strydonck, K. Van Der Borg, A.F.M. De Jong, and E. Keppens, Radiocarbon 34, 873 (1992).

    Google Scholar 

  9. A. Frumkin, A. Shimron, and J. Rosenbaum, Nature 425, 169(2003).

    Article  Google Scholar 

  10. L.V. Rutgers, K. van der Borg, and A.F.M. de Jong, I. Poole. Nature 436, 339 (2005).

    Article  Google Scholar 

  11. A.W.G. Pike, D.L. Hoffmann, M. García-Diez, P.B. Pettitt, J. Alcolea, R.D. Balbín, C. González-Sainz, C. de las Heras, J.A. Lasheras, R. Montes, and J. Zilhão, Science 336, 1409 (2012).

    Article  Google Scholar 

  12. E. Borelli, ARC Laboratory Handbook. (Rome: International Centre for the Study of the Preservation and Restoration of Cultural Property, 1999).

  13. H.J.P. Brocken, N.M. van der Pers, and J.A. Larbi, Mater. Struct. 33, 634 (2000).

    Article  Google Scholar 

  14. F. Yang, B. Zhang, and Q. Ma, Acct. Chem. Res. 43, 936 (2010).

    Article  Google Scholar 

  15. W.D. Kingery, P. Vandiver, and M. Prickett, J. Field Archaeol. 15, 219 (1988).

    Article  Google Scholar 

  16. F. Valla, H. Khalaily, H. Valladas, E. Kaltnecker, F. Bocquentin, T. Cabellos, and D.E. Bar-Yosef Mayer, J. Isr. Prehist. Soc. 37, 135 (2007).

    Google Scholar 

  17. I. Kuijt, and N. Goring-Morris, J. World Prehist. 16, 361(2002).

    Article  Google Scholar 

  18. A. Lindroos, L. Regev, M. Oinonen, Å. Ringbom, and J. Heinemeier, Radiocarbon 54, 915 (2012).

    Google Scholar 

  19. S. Felder-Casagrande, H.G. Wiedemann, and A. Reller, J. Thermal Anal. 49, 971 (1997).

    Article  Google Scholar 

  20. C. Weiss, and I. Gerlach, Archaeol. Anthropol. Sci. 1, 87(2009).

    Article  Google Scholar 

  21. I. Milevski, H. Khalaily, N. Getzov, and I. Hershkovitz, Paléorient 34, 37 (2008).

    Google Scholar 

  22. K.M. Poduska, L. Regev, F. Berna, E. Mintz, I. Milevski, H. Khalaily, S. Weiner, and E. Boaretto, Radiocarbon 54, 887 (2012).

    Google Scholar 

  23. L. Regev, K.M. Poduska, L. Addadi, S. Weiner, and E. Boaretto, J. Archaeol. Sci. 37, 3022 (2010).

    Article  Google Scholar 

  24. F. Berna, A. Behar, R. Shahack-Gross, J. Berg, E. Boaretto, A. Gilboa, I. Sharon, S. Shalev, S. Shilstein, N. Yahalom-Mack, J.R. Zorn, and S. Weiner. J. Archaeol. Sci. 34, 358 (2007).

    Article  Google Scholar 

  25. F. Berna, P. Goldberg, Isr. J. Earth Sci. 56, 107 (2008).

    Article  Google Scholar 

  26. S. Weiner, Microarchaeology: Beyond the Visible Archaeological Record. (Cambridge University Press, Cambridge, 2010).

    Book  Google Scholar 

  27. J. Labeyrie, and G. Delibrias, Nature 201, 742 (1964).

    Article  Google Scholar 

  28. M.S. Baxter, and A. Walton, Nature 225, 937 (1970).

    Article  Google Scholar 

  29. A. Lindroos, J. Heinemeier, Å. Ringbom, F. Brock, P. Sonck-Koota, M. Pehkonen, and J. Suksi, Comm. Hum. Litt. 128, 214 (2011).

    Google Scholar 

  30. G. Hodgins, A. Lindroos, Å. Ringbom, J. Heinemeier, and F. Brock, Comm. Hum. Litt. 128, 209 (2011).

    Google Scholar 

  31. M. Van Strydonck, M. Dupas, and M. Dauchot-Dehons. Radiocarbon 28, 702 (1986).

    Google Scholar 

  32. T. Goslar, D. Nawrocka, and J. Czernik, Radiocarbon 51, 987(2009).

    Google Scholar 

  33. G.L.A. Pesce, R.J. Ball, G. Quarta, and L. Calcagnile, Radiocarbon 54, 933 (2012).

    Google Scholar 

  34. R. Berger, Radiocarbon 34, 880 (1992).

    Google Scholar 

  35. A.M. Wyrwa, T. Goslar, and J. Czernik, Radiocarbon 51, 471 (2009).

    Google Scholar 

  36. L. Angel Ortega, M. Cruz Zuluaga, A. Alonso-Olazabal, X. Murelaga, M. Insausti, and A. Iba-ez-Etxeberria, Radiocarbon 54, 933 (2012).

    Google Scholar 

  37. G.L. Pesce, R.J. Ball, Radiometric Dating, InTech: Available from: http://www.intechopen.com/books/radiometric-dating/dating-of-old-lime-based-mixtures-with-the-pure-lime-lumps-technique, 2012.

  38. A. Lindroos, J. Heinemeier, Å. Ringbom, M. Braskén, and Á. Sveinbjörnsdótter, Radiocarbon 49, 47 (2007).

    Google Scholar 

  39. E. Sonninen, and H. Jungner, Radiocarbon 43, 271 (2001).

    Google Scholar 

  40. C. Pachiaudi, J. Marechal, M. Van Strydonck, M. Dupas, and M. Dauchot-Dehon, Radiocarbon 28, 691 (1986).

    Google Scholar 

  41. M. Van Strydonck, M. Dupas, and E. Keppens, Radiocarbon 31, 610 (1989).

    Google Scholar 

  42. M.M. Langley, S.J. MaLoney, Å. Ringbom, J. Heinemeier, and A. Lindroos, Comm. Hum. Litt. 128, 242 (2011).

    Google Scholar 

  43. D. Nawrocka, T. Goslar, A. Pazdur Materials, Technologies and Practice in Historic Heritage 279 Structures. (Amsterdam: Springer, 2010).

  44. D. Michalska, A. Pazdur, J. Czernik, M. Szczepaniak, and M. Zurakowska, Geochronometria 40, 33 (2013).

    Article  Google Scholar 

  45. K.M. Poduska, L. Regev, E. Boaretto, L. Addadi, S. Weiner, L. Kronik, and S. Curtarolo, Adv. Mater. 23, 550 (2011).

    Article  Google Scholar 

  46. V. Chu, L. Regev, S. Weiner, and E. Boaretto, J. Archaeol. Sci. 35, 905 (2008).

    Article  Google Scholar 

  47. R. Gueta, A. Natan, L. Addadi, S. Weiner, K. Refson, and L. Kronik, Angew. Chem. Int. Ed. 46, 291 (2007).

    Article  Google Scholar 

  48. R. Shahack-Gross, R.-M. Albert, A. Gilboa, O. Nagar-Hilman, I. Sharon, and S. Weiner, J. Archaeol. Sci. 32, 1417 (2005).

    Article  Google Scholar 

  49. H. Watzman, Nature 468, 614 (2010).

    Article  Google Scholar 

  50. R. Shahack-Gross, and A. Ayalon, J. Archaeol. Sci. 40, 570(2013).

    Article  Google Scholar 

  51. L. Regev, E. Eckmeier, E. Mintz, S. Weiner, and E. Boaretto, Radiocarbon 53, 117 (2011).

    Google Scholar 

Download references

Acknowledgements

Funding from Natural Science and Engineering Resource Council (NSERC) Canada (KMP). We also acknowledge the Kimmel Center for Archaeological Science at the Weizmann Institute of Science for providing an exciting meeting point for science and archaeology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kristin M. Poduska.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boaretto, E., Poduska, K.M. Materials Science Challenges in Radiocarbon Dating: The Case of Archaeological Plasters. JOM 65, 481–488 (2013). https://doi.org/10.1007/s11837-013-0573-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-013-0573-8

Keywords

Navigation