Advertisement

JOM

, Volume 65, Issue 4, pp 542–549 | Cite as

Thermomechanical Behavior of Developmental Thermal Barrier Coating Bond Coats

  • Amit PandeyEmail author
  • Vladimir K. Tolpygo
  • Kevin J. Hemker
Article

Abstract

Thermal expansion, microtensile, and stress relaxation experiments have been performed to contrast and compare the thermal and mechanical response of two experimental (L1 and H1) coatings provided by Honeywell Corporation (Morristown, NY). Thermal expansion experiments reveal that both coatings have coefficients of thermal expansion (CTE) that vary with temperature and that the CTE mismatch between the coatings and superalloy substrate is significant in the case of L1 as compared to H1. Values of the 0.2% offset yield stress (YS), Young’s modulus (E), and hardening exponent (n) are reported. Room-temperature microtensile experiments show higher strain hardening and a very low value of failure strain for L1 as compared to H1. At elevated temperatures, there is a significant decrease in the YS of as-received L1 for (924 MPa at room temperature to 85 MPa at 1000°C) as compared to H1. Finally, a power law creep description for high-temperature stress relaxation is developed and the measured values of the stress exponent (n = 3) and activation energies (Q creep = 200–250 kJ/mol) are shown to be consistent with power law creep.

Keywords

Electric Discharge Machine Digital Image Correlation Bond Coat Thermally Grow Oxide Thermal Barrier Coating System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The authors are grateful to Honeywell Corporation for providing samples and financial support for this study.

References

  1. 1.
    R.A. Miller, J. Therm. Spray Technol. 6, 35 (1997).CrossRefGoogle Scholar
  2. 2.
    N.P. Padture, M. Gell, and E.H. Jordan, Science 296, 280 (2002).CrossRefGoogle Scholar
  3. 3.
    A. Evans, D. Mumm, J. Hutchinson, G. Meier, and F. Pettit, Prog. Mater. Sci. 46, 505 (2001).CrossRefGoogle Scholar
  4. 4.
    Y. Touloukian, R. Kirby, R. Taylor, and P. Desai, ed., Thermophysical Properties of Matter—The TPRC Data Series, Vol. 12: Thermal ExpansionMetallic Elements and Alloys (New York: IFI/Plenum, 1975).Google Scholar
  5. 5.
    J. James, J. Spittle, S. Brown, and R. Evans, Meas. Sci. Technol. 12, 1 (2001).CrossRefGoogle Scholar
  6. 6.
    D. Pan, M.W. Chen, P.K. Wright, and K.J. Hemker, Acta Mater. 51, 2205 (2003).CrossRefGoogle Scholar
  7. 7.
    J. Haynes, B. Pint, W. Porter, and I. Wright, Mater. High Temp. 21, 87 (2004).CrossRefGoogle Scholar
  8. 8.
    I. Riess, J. Phys. E: Sci. Instrum. 20, 257 (1987).MathSciNetCrossRefGoogle Scholar
  9. 9.
    F. Raether, R. Springer, and S. Beyer, Mater. Res. Innov. 4, 245 (2001).CrossRefGoogle Scholar
  10. 10.
    M. Paganelli, Am. Ceram. Soc. Bull. 81, 25 (2002).Google Scholar
  11. 11.
    S. Bennett, J. Phys. E: Sci. Instrum. 10, 525 (1977).CrossRefGoogle Scholar
  12. 12.
    M. Okaji and H. Imai, J. Phys. E: Sci. Instrum. 20, 887 (1987).CrossRefGoogle Scholar
  13. 13.
    H. Wantanabe, N. Yamada, and M. Okaji, Int. J. Thermophys. 23, 543 (2002).CrossRefGoogle Scholar
  14. 14.
    M. Zupan and K.J. Hemker, Mater. Sci. Eng. A 319–321, 810 (2001).Google Scholar
  15. 15.
    M. Zupan, M.J. Hayden, C.J. Boehlert, and K.J. Hemker, Exp. Mech. 41, 242 (2001).CrossRefGoogle Scholar
  16. 16.
    M. Zupan and K.J. Hemker, Acta Mater. 51, 6277 (2003).CrossRefGoogle Scholar
  17. 17.
    K.J. Hemker and W.N. Sharpe, Annu. Rev. Mater. Res. 37, 93 (2007).CrossRefGoogle Scholar
  18. 18.
    K.J. Hemker, B.G. Mendis, and C. Eberl, Mater. Sci. Eng. A 483–484, 727 (2008).Google Scholar
  19. 19.
    B.G. Mendis, B. Tryon, T.M. Pollock, and K.J. Hemker, Surf. Coat. Technol. 201, 3918 (2006).CrossRefGoogle Scholar
  20. 20.
    B.G. Mendis and K.J. Hemker, Scripta Mater. 58, 255 (2008).CrossRefGoogle Scholar
  21. 21.
    R.J. Thompson (Ph.D. dissertation, Johns Hopkins University, 2008).Google Scholar
  22. 22.
    R.J. Thompson and K.J. Hemker (Paper presented at the SEM Annual Conference & Exposition on Experimental and Applied Mechanics, 2007).Google Scholar
  23. 23.
    J.S. Jones (Ph.D. dissertation, Johns Hopkins University, 2009).Google Scholar
  24. 24.
    D.T. Butler (Ph.D. dissertation, Johns Hopkins University, 2009).Google Scholar
  25. 25.
    C. Eberl, D.S. Gianola, and K.J. Hemker, Exp. Mech. 50 (1), 85 (2010).Google Scholar
  26. 26.
    C. Eberl, D.S. Gianola, X. Wang, M.Y. He, A.G. Evans, and K.J. Hemker, Acta Mater. 59 (9), 3612 (2011).Google Scholar
  27. 27.
    A. Pandey, A. Shyam, T.R. Watkins, E. Lara-Curzio, R.J. Stafford, and K.J. Hemker, Elastic Properties of Porous and Microcracked Ceramic Materials under Uniaxial Tension Loading (in review).Google Scholar
  28. 28.
    A. Pandey, V.K. Tolpygoc, and K.J. Hemker, Temperature Dependence of the Anisotropy and Creep in the Second Generation Single Crystal Nickel Superalloy (in preparation).Google Scholar

Copyright information

© TMS 2013

Authors and Affiliations

  • Amit Pandey
    • 1
    • 2
    Email author
  • Vladimir K. Tolpygo
    • 3
  • Kevin J. Hemker
    • 1
  1. 1.Department of Mechanical EngineeringThe Johns Hopkins UniversityBaltimoreUSA
  2. 2.Materials Science and Technology DivisionOak Ridge National LaboratoryOak RidgeUSA
  3. 3.Materials and Process EngineeringHoneywell AerospacePhoenixUSA

Personalised recommendations