Skip to main content

Meso-Scale Modeling the Orientation and Interface Stability of Cu/Nb-Layered Composites by Rolling

Abstract

Metallic-based multilayered nanocomposites are recognized for their increased plastic flow resistance and indentation hardness, increased ductility, improved radiation damage resistance, improved electrical and magnetic properties, and enhanced fatigue failure resistance compared to conventional metallic materials. One of the ways in which these classes of materials are manufactured is through accumulated roll bonding where the material is produced by several rolling and heat-treatment steps during which the layer thickness is reduced through severe plastic deformation. A single rolling pass of the accumulated roll bonding process in which a Cu/Nb-layered composite with an initial average layer thickness of 24 μm subjected to a 50% height reduction is modeled. A single-crystal model based upon thermally activated dislocation motion is used. Nanohardness tests for both the Cu and Nb layers are used to help initialize the model for each of the two materials. Electron backscatter diffraction (EBSD) data of the heat-treated material is used to characterize the initial state of the composite and to produce 40 combined morphological and crystallographic numerical model realizations of the material. The results suggest very good agreement between the predicted and experimental textures for both the materials. Highly oriented microstructure develops during severe plastic rolling deformation of Cu/Nb nanocomposites. The deformation textures significantly deviate from those expected when rolling Cu or Nb alone, and the Cu/Nb interfaces do not correspond to those with the lowest possible formation energies. We study the interfacial stability of specific Cu/Nb bicrystal configurations under rolling conditions using a finite-element crystal plasticity model. Specifically, we examine how slip activity and lattice reorientation are affected by the kinematic constraint imposed by the interface. Our results show that for certain configurations the slip activity and lattice rotation of the individual crystallites display some sensitivity to the kinematic constraint, yet the overall stability of a given bicrystal can be predicted by the stability of the individual single-crystal orientations. Future work will account for the influence of the bimetal interface on the interface stability and development of enhanced properties.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. 1.

    A. Misra, J.P. Hirth, R.G. Hoagland, J.D. Embury, and H. Kung, Acta Mater. 52, 2387 (2004).

    Article  Google Scholar 

  2. 2.

    S.-B. Lee, J.E. LeDonne, S.C.V. Lim, I.J. Beyerlein, and A.D. Rollett, Acta Mater. 60, 1747 (2012).

    Article  Google Scholar 

  3. 3.

    H.M. Zbib, C.T. Overman, F. Akasheh, and D. Bahr, Int. J. Plast 27, 1618 (2011).

    MATH  Article  Google Scholar 

  4. 4.

    S.C.V. Lim and A.D. Rollett, Mater. Sci. Eng., A 520, 189 (2009).

    Article  Google Scholar 

  5. 5.

    F. Akasheh, H.M. Zbib, J.P. Hirth, R.G. Hoagland, and A. Misra, J. Appl. Phys. 101, 084314 (2007).

    Article  Google Scholar 

  6. 6.

    I.J. Beyerlein, et al., J. Mater. 64, 1192 (2012).

    Google Scholar 

  7. 7.

    A. Misra, M.J. Demkowicz, X. Zhang, and R.G. Hoagland, J. Mater. 59, 62 (2007).

  8. 8.

    N.A. Mara, T. Tamayo, A.V. Sergueeva, X. Zhang, A. Misra, and A.K. Mukherjee, Thin Solid Films 515, 3241 (2007).

    Article  Google Scholar 

  9. 9.

    N.A. Mara, D. Bhattacharyya, P. Dickerson, R.G. Hoagland, and A. Misra, Appl. Phys. Lett. 92, 231901 (2008).

    Article  Google Scholar 

  10. 10.

    A. Misra and H. Kung, Adv. Eng. Mater. 3, 217 (2001).

    Article  Google Scholar 

  11. 11.

    A. Misra, J.P. Hirth, and H. Kung, Phil. Mag. A 82, 2935 (2002).

    Article  Google Scholar 

  12. 12.

    D. Raabe, J. Ball, and G. Gottstein, Scripta Metall. 27, 211 (1992).

    Article  Google Scholar 

  13. 13.

    J.S. Carpenter, S.C. Vogel, J.E. LeDonne, D.L. Hammon, I.J. Beyerlein, and N.A. Mara, Acta Mater. 60, 1576 (2012).

    Article  Google Scholar 

  14. 14.

    I.J. Beyerlein et al., J. Mater. Res. (accepted).

  15. 15.

    P.M. Anderson, J.F. Bingert, A. Misra, and J.P. Hirth, Acta Mater. 51, 6059 (2003).

    Article  Google Scholar 

  16. 16.

    K. Al-Fadhalah, C.N. Tome, A.J. Beaudoin, I.M. Robertson, J.P. Hirth, and A. Misra, Phil. Mag. 85, 1419 (2005).

    Article  Google Scholar 

  17. 17.

    A. Misra and R.G. Hoagland, J. Mater. Sci. 42, 1765 (2007).

    Article  Google Scholar 

  18. 18.

    S.J. Zheng, I.J. Beyerlein, J. Wang, J.S. Carpenter, W.Z. Han, and N.A. Mara, Acta Mater. 60, 5858 (2012).

    Article  Google Scholar 

  19. 19.

    W.Z. Han, J.S. Carpenter, J. Wang, I.J. Beyerlein, and N.A. Mara, Appl. Phys. Lett. 100, 011911 (2012).

    Article  Google Scholar 

  20. 20.

    I.J. Beyerlein, N.A. Mara, D. Bhattacharyya, D.J. Alexander, and C.T. Necker, Int. J. Plast 27, 121 (2011).

    Article  Google Scholar 

  21. 21.

    N.A. Mara, I.J. Beyerlein, J.S. Carpenter, and J. Wang, J. Mater. 64, 1218 (2012).

    Google Scholar 

  22. 22.

    A. Misra, J.P. Hirth, and R.G. Hoagland, Acta Mater. 53, 4817 (2005).

    Article  Google Scholar 

  23. 23.

    H.J. Chu, J. Wang, I.J. Beyerlein, and E. Pan, Int. J. Plast. 41, 1 (2013).

    Article  Google Scholar 

  24. 24.

    J. Hirsch and K. Lücke, Acta Metall. 36, 2863 (1988).

    Article  Google Scholar 

  25. 25.

    H. Hammelrath, J.F. Butler, D. Juul-Jensen, T. Leffers, H. Hu, and K. Lücke, Tex. Micro. 13, 165 (1991).

    Article  Google Scholar 

  26. 26.

    K. Kang, J. Wang, and I.J. Beyerlein, J. Appl. Phys. 112, 073501 (2012).

    Article  Google Scholar 

  27. 27.

    J.K. Chen, G. Chen, and W.T. Reynolds, Phil. Mag. A 78, 405 (2009).

    Article  Google Scholar 

  28. 28.

    M.J. Demkowicz, R. Hoagland, and J.P. Hirth, Phys. Rev. Lett. 100, 136102 (2008).

    Article  Google Scholar 

  29. 29.

    R.F. Zhang, J. Wang, I.J. Beyerlein, and T.C. Germann, Scripta Mater. 65, 1022 (2011).

    Article  Google Scholar 

  30. 30.

    J.S. Carpenter, et al., Scripta Mater. 67, 336 (2012).

    Article  Google Scholar 

  31. 31.

    W.Z. Han, A. Misra, N.A. Mara, T.C. Germann, J.K. Baldwin, T. Shimada, and S.N. Luo, Phil. Mag. 91, 4172 (2011).

    Article  Google Scholar 

  32. 32.

    R.F. Zhang, T.C. Germann, J. Wang, X.Y. Liu, and I.J. Beyerlein, Scripta Mater. 68, 114 (2013).

    Article  Google Scholar 

  33. 33.

    J.R. Mayeur, I.J. Beyerlein, C.A. Bronkhorst, H.M. Mourad, and B.L. Hansen, Int. J. Plast. (accepted).

  34. 34.

    U.F. Kocks, C.N. Tome, and H.-R. Wenk, eds., Texture and Anisotropy (Cambridge, U.K.: Cambridge University Press, 1998).

    MATH  Google Scholar 

  35. 35.

    M.E. Gurtin, E. Fried, and L. Anand, The Mechanics and Thermodynamics of Continua (Cambridge, U.K.: Cambridge University Press, 2010).

    Book  Google Scholar 

  36. 36.

    S. Ghosh and D. Dimiduk, eds., Computational Methods for Microstructure-Property Relationships (New York, NY: Springer, 2011).

    Google Scholar 

  37. 37.

    A. Lewis, M. DeGraef, H.F. Poulsen, J. Simmons, and G. Spanos (Paper presented at the First International Conference on 3D Materials Science, The Minerals, Metals & Materials Society, Seven Springs, PA, 8–12 July, 2012).

  38. 38.

    S.-B. Lee, R.A. Lebensohn, and A.D. Rollett, Int. J. Plast 27, 707 (2011).

    MATH  Article  Google Scholar 

  39. 39.

    R. Becker, Int. J. Plast 20, 1983 (2004).

    MATH  Article  Google Scholar 

  40. 40.

    C.A. Bronkhorst, B.L. Hansen, E.K. Cerreta, and J.F. Bingert, J. Mech. Phys. Solids 55, 2351 (2007).

    MathSciNet  MATH  Article  Google Scholar 

  41. 41.

    B.L. Hansen, C.A. Bronkhorst, and M. Ortiz, Modell. Simul. Mater. Sci. Eng. 18, 055001 (2010).

    Article  Google Scholar 

  42. 42.

    N.R. Barton, D.J. Benson, and R. Becker, Modell. Simul. Mater. Sci. Eng. 13, 707 (2005).

    Article  Google Scholar 

  43. 43.

    S. Yadegari, S. Turteltaub, and A.S.J. Suiker, Mech. Mater. 53, 1 (2012).

    Article  Google Scholar 

  44. 44.

    M. Anahid, M.K. Samal, and S. Ghosh, J. Mech. Phys. Solids 59, 2157 (2011).

    Article  Google Scholar 

  45. 45.

    J. Shi and M.A. Zikry, Int. J. Solids Struct. 46, 3914 (2009).

    MATH  Article  Google Scholar 

  46. 46.

    W.M. Ashmawi and M.A. Zikry, Mech. Mater. 35, 537 (2003).

    Article  Google Scholar 

  47. 47.

    Y.J. Wei and L. Anand, J. Mech. Phys. Solids 52, 2587 (2004).

    MATH  Article  Google Scholar 

  48. 48.

    M.E. Gurtin and L. Anand, J. Mech. Phys. Solids 56, 184 (2008).

    MathSciNet  MATH  Article  Google Scholar 

  49. 49.

    S.D. Sintay (Ph.D. Dissertation, Carnegie Mellon University, Pittsburgh, PA, 2010).

  50. 50.

    M.A. Groeber, M.D. Uchic, D.M. Dimiduk, Y. Bhandari, and S. Ghosh, J. Comput Aided Mater. Des. 14, 63 (2007).

    Article  Google Scholar 

  51. 51.

    M. Groeber et al., DREAM.3D User Manual, 2012.

  52. 52.

    M. Veilleux, Private communication, 2010.

  53. 53.

    B.L. Hansen et al., Int. J. Plast. (submitted).

  54. 54.

    EDAX, OIM Analysis Software User’s Manual, ver. 6.1.3 (Mahwah, NJ: EDAX Inc., 2011).

  55. 55.

    ABAQUS, Version 6.12 User’s Manual (Providence, RI: Dassault Systemes Simulia Corp., 2012).

  56. 56.

    Z.Q. Wang and I.J. Beyerlein, Int. J. Plast. 27, 1471 (2011).

    MATH  Article  Google Scholar 

  57. 57.

    E.P. Busso (Ph.D. Dissertation, MIT, 1990).

  58. 58.

    A. Acharya and A.J. Beaudoin, J. Mech. Phys. Solids 48, 2213 (2000).

    MATH  Article  Google Scholar 

  59. 59.

    U.F. Kocks, J. Eng. Mater. Tech. 98, 76 (1976).

    Article  Google Scholar 

  60. 60.

    G. Simmons and H. Wang, Single Crystal Elastic Constants and Calculated Aggregate Properties: A Handbook (Cambridge, MA: The MIT Press, 1971).

    Google Scholar 

  61. 61.

    A. Arsenlis, D.M. Parks, R. Becker, and V.V. Bulatov, J. Mech. Phys. Solids 52, 1213 (2004).

    MathSciNet  MATH  Article  Google Scholar 

  62. 62.

    S. Puri, A. Das, and A.J. Acharya, J. Mech. Phys. Solids 59, 2400 (2011).

    Article  Google Scholar 

  63. 63.

    A. Acharya, Phil. Mag. 87, 1349 (2007).

    Article  Google Scholar 

  64. 64.

    A. Acharya, J. Elast. 104, 23 (2011).

    MathSciNet  Article  Google Scholar 

Download references

Acknowledgements

This work was conducted under the Los Alamos National Laboratory Directed Research Program project 20110029DR. This work was performed, in part, at the Center for Integrated Nanotechnologies, an Office of Science User Facility operated for the U. S. Department of Energy (DOE) Office of Science. Los Alamos National Laboratory, an affirmative action equal opportunity employer, is operated by Los Alamos National Security, LLC, for the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396.

Author information

Affiliations

Authors

Corresponding author

Correspondence to C. A. Bronkhorst.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Bronkhorst, C.A., Mayeur, J.R., Beyerlein, I.J. et al. Meso-Scale Modeling the Orientation and Interface Stability of Cu/Nb-Layered Composites by Rolling. JOM 65, 431–442 (2013). https://doi.org/10.1007/s11837-012-0541-8

Download citation

Keywords

  • Slip System
  • Pole Figure
  • Accumulate Roll Bonding
  • Bimaterial Interface
  • Accumulate Roll Bonding Process