, Volume 65, Issue 3, pp 390–400 | Cite as

Atomic-Scale Interfacial Structure in Rock Salt and Tetradymite Chalcogenide Thermoelectric Materials

  • D. L. Medlin
  • G. J. Snyder


Interfaces play important roles in the performance of nanostructured thermoelectric materials. However, our understanding of the atomic-scale structure of these interfaces is only beginning to emerge. In this overview article, we highlight and review several examples illustrating aspects of interfacial structure in the rock salt and tetradymite classes of chalcogenide materials. The chalcogenide compounds encompass some of the most successful and well-understood thermoelectric materials employed in actual application and are also relevant more broadly in diverse fields including phase-change memory materials, infrared radiation detection, and topological insulators. The examples we consider here focus in three areas: the influence of weak interlayer bonding on grain boundary structure in Bi2Te3, crystallographic alignment and interfacial coherency in rock salt and related cubic chalcogenides, and the structure of interfaces at tetradymite precipitates in a rock salt chalcogenide matrix. The complex interfaces in these systems can be understood and generalized by considering the similarities between the rock salt, tetradymite, and related structures and by analyzing of the relevant interfacial defects.


PbTe Bi2Te3 Thermoelectric Material Rock Salt Bi2Se3 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors are grateful for many helpful and illuminating discussions with our colleagues concerning interfaces and phase stability in the chalcogenides. Particular acknowledgements go to J. Lensch-Falk, P. Sharma, J. Sugar, C. Spataru, and N. Yang at Sandia and to N. Heinz and T. Ikeda at Caltech. G.J.S. thanks the AFOSR-MURI program for funding. Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under Contract DE-AC04-94AL85000. Support was provided in part by Sandia’s Laboratory-Directed Research and Development Program.


  1. 1.
    M.S. Dresselhaus, G. Chen, M.Y. Tang, R. Yang, H. Lee, D. Wang, Z. Ren, J.-P. Fleurial, and P. Gogna, Adv. Mater. 19, 1043 (2007).CrossRefGoogle Scholar
  2. 2.
    G.J. Snyder and E.S. Toberer, Nature Mater. 7, 105 (2008).CrossRefGoogle Scholar
  3. 3.
    D.L. Medlin and G.J. Snyder, Curr. Opin. Colloid Interface. Sci. 14, 226 (2009).CrossRefGoogle Scholar
  4. 4.
    M.G. Kanatzidis, Chem. Mater. 22, 648 (2010).CrossRefGoogle Scholar
  5. 5.
    K. Biswas, J. He, I.D. Blum, C.-I. Wu, T.P. Hogan, D.N. Seidman, V.P. Dravid, and M.G. Kanatzidis, Nature 489, 414 (2012).CrossRefGoogle Scholar
  6. 6.
    D.M. Rowe, V.S. Shukla, and N. Savvides, Nature 290, 765 (1981).CrossRefGoogle Scholar
  7. 7.
    J.W. Sharp, S.J. Poon, and H.J. Goldsmid, Phys. Stat. Sol. (a) 187, 507 (2001).CrossRefGoogle Scholar
  8. 8.
    S.V. Faleev and F. Léonard, Phys. Rev. B 77, 214304 (2008).CrossRefGoogle Scholar
  9. 9.
    J.P. Heremans, C.M. Thrush, and D.T. Morelli, Phys. Rev. B 70, 115334 (2004).CrossRefGoogle Scholar
  10. 10.
    J.M.O. Zide, D. Vashaee, Z.X. Bian, G. Zeng, J.E. Bowers, A. Shakouri, and A.C. Gossard, Phys. Rev. B 74, 205335 (2006).CrossRefGoogle Scholar
  11. 11.
    M. Zebarjadi, G. Joshi, G. Zhu, B. Yu, A. Minnich, Y. Lan, X. Wang, M. Dresselhaus, Z. Ren, and G. Chen, Nano Lett. 11, 2225 (2011).CrossRefGoogle Scholar
  12. 12.
    T. Ikeda, S.M. Haile, V.A. Ravi, H. Azizgolshani, F. Gascoin, and G.J. Snyder, Acta Mater. 55, 1227 (2007).CrossRefGoogle Scholar
  13. 13.
    T. Ikeda, V. Ravi, and G. Snyder, Metall. Mater. Trans. A 41, 641 (2010).CrossRefGoogle Scholar
  14. 14.
    T. Ikeda, L.A. Collins, V.A. Ravi, F.S. Gascoin, S.M. Haile, and G.J. Snyder, Chem. Mater. 19, 763 (2007).CrossRefGoogle Scholar
  15. 15.
    T. Ikeda, E.S. Toberer, V.A. Ravi, G.J. Snyder, S. Aoyagi, E. Nishibori, and M. Sakata, Scr. Mater. 60, 321 (2009).CrossRefGoogle Scholar
  16. 16.
    T. Ikeda, V. Ravi, and G.J. Snyder, Acta Mater. 57, 666 (2009).CrossRefGoogle Scholar
  17. 17.
    T. Ikeda, N.J. Marolf, K. Bergum, M.B. Toussaint, N.A. Heinz, V.A. Ravi, and G.J. Snyder, Acta Mater. 59, 2679 (2011).CrossRefGoogle Scholar
  18. 18.
    Z.H. Dughaish, Phys. B 322, 205 (2002).CrossRefGoogle Scholar
  19. 19.
    A.D. LaLonde, Y. Pei, H. Wang, and G.J. Snyder, Mater. Today 14, 526 (2011).CrossRefGoogle Scholar
  20. 20.
    E.A. Skrabek and D.S. Trimmer, CRC Handbook of Thermoelectrics, ed. D.M. Rowe (Boca Raton, FL: CRC Press, 1995), pp. 267–275.Google Scholar
  21. 21.
    H. Scherrer and S. Scherrer, CRC Handbook of Thermoelectrics, ed. D.M. Rowe (Boca Raton, FL: CRC Press Inc., 1995), pp. 211–237.Google Scholar
  22. 22.
    H. Scherrer and S. Scherrer, Thermoelectrics Handbook Macro to Nano, ed. D.M. Rowe (Boca Raton, FL: CRC Press, 2006), pp. 27:1–18.Google Scholar
  23. 23.
    B. Poudel, Q. Hao, Y. Ma, Y. Lan, A. Minnich, B. Yu, X. Yan, D. Wang, A. Muto, D. Vashaee, X. Chen, J. Liu, M.S. Dresselhaus, G. Chen, and Z. Ren, Science 320, 634 (2008).CrossRefGoogle Scholar
  24. 24.
    W. Xie, X. Tang, Y. Yan, Q. Zhang, and T.M. Tritt, J. Appl. Phys. 105, 113713 (2009).CrossRefGoogle Scholar
  25. 25.
    R. Detemple, D. Wamwangi, M. Wuttig, and G. Bihlmayer, Appl. Phys. Lett. 83, 2572 (2003).CrossRefGoogle Scholar
  26. 26.
    M.N. Schneider, T. Rosenthal, C. Stiewe, and O. Oeckler, Z. Kristallogr. 225, 463 (2010).CrossRefGoogle Scholar
  27. 27.
    M. Wuttig and N. Yamada, Nat. Mater. 6, 824 (2007).CrossRefGoogle Scholar
  28. 28.
    H. Zogg, A. Fach, C. Maissen, J. Masek, and S. Blunier, Opt. Eng. 33, 1440 (1994).CrossRefGoogle Scholar
  29. 29.
    M.Z. Hasan and C.L. Kane, Rev. Mod. Phys. 82, 3045 (2010).CrossRefGoogle Scholar
  30. 30.
    S. Geller, Acta Crystallogr. 12, 46 (1959).CrossRefGoogle Scholar
  31. 31.
    F.D. Rosi, E.F. Hockings, and N.E. Lindenblad, RCA Rev. 22, 82 (1961).Google Scholar
  32. 32.
    D.T. Morelli, V. Jovovic, and J.P. Heremans, Phys. Rev. Lett. 101, 035901 (2008).CrossRefGoogle Scholar
  33. 33.
    V. Jovovic and J.P. Heremans, J. Electron. Mater. 38, 1504 (2009).CrossRefGoogle Scholar
  34. 34.
    K.F. Hsu, S. Loo, F. Guo, W. Chen, J.S. Dyck, C. Uher, T. Hogan, E.K. Polychroniadis, and M.G. Kanatzidis, Science 303, 818 (2004).CrossRefGoogle Scholar
  35. 35.
    A.J. Thompson, J.W. Sharp, and C.J. Rawn, J. Electron. Mater. 38, 1407 (2009).CrossRefGoogle Scholar
  36. 36.
    Y. Chen, M.D. Nielsen, Y.-B. Gao, T.-J. Zhu, X. Zhao, and J.P. Heremans, Adv. Energy Mater. 2, 58 (2012).CrossRefGoogle Scholar
  37. 37.
    S. Gorsse, P. Bellanger, Y. Brechet, E. Sellier, A. Umargi, U. Ail, and R. Decourt, Acta Mater. 59, 7425 (2011).CrossRefGoogle Scholar
  38. 38.
    Y. Rosenberg, Y. Gelbstein, and M.P. Dariel, J. Alloys Compd. 526, 31 (2012).CrossRefGoogle Scholar
  39. 39.
    J. Goldak, C.S. Barrett, D. Innes, and W. Youdelis, J. Chem. Phys. 44, 3323 (1966).CrossRefGoogle Scholar
  40. 40.
    P.B. Littlewood, J. Phys. C 13, 4875 (1980).CrossRefGoogle Scholar
  41. 41.
    M. Snykers, P. Delavignette, and S. Amelinckx, Mater. Res. Bull. 7, 831 (1972).CrossRefGoogle Scholar
  42. 42.
    B.A. Cook, M.J. Kramer, X. Wei, J.L. Harringa, and E.M. Levin, J. Appl. Phys. 101, 053715 (2007).CrossRefGoogle Scholar
  43. 43.
    N.J. Cook, C.L. Ciobanu, T. Wagner, and C.J. Stanley, Can. Mineral. 45, 665 (2007).CrossRefGoogle Scholar
  44. 44.
    N. Frangis, S. Kuypers, C. Manolikas, G.V. Tendeloo, J.V. Landuyt, and S. Amelinckx, J. Solid State Chem. 84, 314 (1990).CrossRefGoogle Scholar
  45. 45.
    J.R. Drabble and C.H.L. Goodman, J. Phys. Chem. Solids 5, 142 (1958).CrossRefGoogle Scholar
  46. 46.
    J.R. Wiese and L. Muldawer, J. Phys. Chem. Solids 15, 13 (1960).CrossRefGoogle Scholar
  47. 47.
    H. Lind, S. Lidin, and U. Häussermann, Phys. Rev. B 72, 184101 (2005).CrossRefGoogle Scholar
  48. 48.
    J.W.G. Bos, F. Faucheux, R.A. Downie, and A. Marcinkova, J. Solid State Chem. 193, 13 (2012).CrossRefGoogle Scholar
  49. 49.
    J.W.G. Bos, H.W. Zandbergen, M.-H. Lee, N.P. Ong, and R.J. Cava, Phys. Rev. B 75, 195203 (2007).CrossRefGoogle Scholar
  50. 50.
    P.A. Sharma, A.L.L. Sharma, D.L. Medlin, A.M. Morales, N. Yang, M. Barney, J. He, F. Drymiotis, J. Turner, and T.M. Tritt, Phys. Rev. B 83, 235209 (2011).CrossRefGoogle Scholar
  51. 51.
    S. Kuypers, G.V. Tendeloo, J.V. Landuyt, and S. Amelinckx, J. Solid State Chem. 76, 102 (1988).CrossRefGoogle Scholar
  52. 52.
    O.G. Karpinskii, L.E. Shelimova, E.S. Avilov, M.A. Kretova, and V.S. Zemskov, Inorg. Mater. 38, 17 (2002).CrossRefGoogle Scholar
  53. 53.
    L.A. Kuznetsova, V.L. Kuznetsov, and D.M. Rowe, J. Phys. Chem. Solids 61, 1269 (2000).CrossRefGoogle Scholar
  54. 54.
    L.E. Shelimova, O.G. Karpinskii, T.E. Svechnikova, E.S. Avilov, M.A. Kretova, and V.S. Zemskov, Inorg. Mater. 40, 1264 (2004).CrossRefGoogle Scholar
  55. 55.
    J.D. Sugar and D.L. Medlin, J. Mater. Sci. 46, 1668 (2011).CrossRefGoogle Scholar
  56. 56.
    J.D. Keys and H.M. Dutton, J. Appl. Phys. 34, 1830 (1963).CrossRefGoogle Scholar
  57. 57.
    J.P. Fleurial, L. Gaillard, R. Triboulet, H. Scherrer, and S. Scherrer, J. Phys. Chem. Solids 49, 1237 (1988).CrossRefGoogle Scholar
  58. 58.
    S.S. Kim, F. Yin, and Y. Kagawa, J. Alloys Compd. 419, 306 (2006).CrossRefGoogle Scholar
  59. 59.
    O. Ben-Yehuda, R. Shuker, Y. Gelbstein, Z. Dashevsky, and M.P. Dariel, J. Appl. Phys. 101, 113707 (2007).CrossRefGoogle Scholar
  60. 60.
    X.A. Fan, J.Y. Yang, W. Zhu, S.Q. Bao, X.K. Duan, C.J. Xiao, and K. Li, J. Alloys Compd. 461, 9 (2008).CrossRefGoogle Scholar
  61. 61.
    N. Gothard, G. Wilks, T.M. Tritt, and J.E. Spoward, J. Electron. Mater. 39, 1909 (2010).CrossRefGoogle Scholar
  62. 62.
    C. André, D. Vasilevskiy, S. Turenne, and R.A. Masut, J. Electron. Mater. 38, 1061 (2009).CrossRefGoogle Scholar
  63. 63.
    J.J. Shen, L.P. Hu, T.J. Zhu, and X.B. Zhao, Appl. Phys. Lett. 99, 124102 (2011).CrossRefGoogle Scholar
  64. 64.
    L.P. Hu, X.H. Liu, H.H. Xie, J.J. Shen, T.J. Zhu, and X.B. Zhao, Acta Mater. 60, 4431 (2012).CrossRefGoogle Scholar
  65. 65.
    D.L. Medlin, Q.M. Ramasse, C.D. Spataru, and N.Y.C. Yang, J. Appl. Phys. 108, 043517 (2010).CrossRefGoogle Scholar
  66. 66.
    D.L. Medlin and N.Y.C. Yang, J. Electron. Mater. 41, 1456 (2012).CrossRefGoogle Scholar
  67. 67.
    I. Samaras, L. Papadimitriou, J. Stoemenos, and N.A. Economou, Thin Solid Films 115, 141 (1984).CrossRefGoogle Scholar
  68. 68.
    M. Tsuji, Y. Mizuno, Y. Susuki, and M. Mannami, J. Crystal Growth 108, 817 (1991).CrossRefGoogle Scholar
  69. 69.
    K. Wiesauer and G. Springholz, Appl. Surf. Sci. 188, 49 (2002).CrossRefGoogle Scholar
  70. 70.
    K. Wiesauer and G. Springholz, Appl. Phys. Lett. 83, 5160 (2003).CrossRefGoogle Scholar
  71. 71.
    K. Wiesauer and G. Springholz, Phys. Rev. B 69, 25313 (2004).CrossRefGoogle Scholar
  72. 72.
    E.I. Rogacheva, S.N. Grigorov, O.N. Nashchekina, T.V. Tavrina, S.G. Lyubchenko, A.Y. Sipatov, V.V. Volobuev, A.G. Fedorov, and M.S. Dresselhaus, Thin Solid Films 493, 41 (2005).CrossRefGoogle Scholar
  73. 73.
    E. Wintersberger, N. Hrauda, D. Kriegner, M. Keplinger, G. Springholz, J. Stangl, G. Bauer, J. Oswald, T. Belytschko, C. Deiter, F. Bertram, and O.H. Seeck, Appl. Phys. Lett. 96, 1–131905 (2012).Google Scholar
  74. 74.
    E. Quarez, K.-F. Hs, R. Pcionek, N. Frangis, E.K. Polychroniadis, and M.G. Kanatzidis, J. Am. Chem. Soc. 127, 9177 (2005).CrossRefGoogle Scholar
  75. 75.
    H. Lin, E.S. Bozin, S.J.L. Billinge, E. Quarez, and M.G. Kanatzidis, Phys. Rev. B 72, 174113 (2005).CrossRefGoogle Scholar
  76. 76.
    N. Chen, F. Gascoin, G.J. Snyder, E. Müller, G. Karpinski, and C. Stiewe, Appl. Phys. Lett. 87, 171903 (2005).CrossRefGoogle Scholar
  77. 77.
    H.J. Wu, S.W. Chen, T. Ikeda, and G.J. Snyder, Acta Mater. 60, 1129 (2012).CrossRefGoogle Scholar
  78. 78.
    T. Ikeda, S. Iwanaga, H.-J. Wu, N.J. Marolf, S.-W. Chen, and G.J. Snyder, J. Mater. Chem. 22, 24335 (2012).CrossRefGoogle Scholar
  79. 79.
    J. He, S.N. Girard, M.G. Kanatzidis, and V.P. Dravid, Adv. Funct. Mater. 20, 764 (2010).CrossRefGoogle Scholar
  80. 80.
    J. Androulakis, C.-H. Lin, H.-J. Lin, C. Uher, C.-I. Wu, T. Hogan, B.A. Cook, T. Caillat, K.M. Paraskevopoulos, and M.G. Kanatzidis, J. Am. Chem. Soc. 129, 9780 (2007).CrossRefGoogle Scholar
  81. 81.
    K. Biswas, J. He, G. Wang, S.-H. Lo, C. Uher, and M.G. Kanatzidis, Energy & Environ. Sci. 4, 4675 (2011).CrossRefGoogle Scholar
  82. 82.
    L.-D. Zhao, J. He, C.-I. Wu, T.P. Hogan, X. Zhou, C. Uher, V.P. Dravid, and M.G. Kanatzidis, J. Am. Chem. Soc. 134, 7902 (2012).CrossRefGoogle Scholar
  83. 83.
    B.A. Cook, M.J. Kramer, J.L. Harringa, M.-K. Han, D.-Y. Chung, and M.G. Kanatzidis, Adv. Funct. Mater. 19, 1254 (2009).CrossRefGoogle Scholar
  84. 84.
    J.D. Sugar and D.L. Medlin, J. Alloys Compd. 478, 75 (2009).CrossRefGoogle Scholar
  85. 85.
    J. Lensch-Falk, J.D. Sugar, M. Hekmaty, and D.L. Medlin, J. Alloys Compd. 504, 37 (2010).CrossRefGoogle Scholar
  86. 86.
    Y. Pei, J. Lensch-Falk, E.S. Toberer, D.L. Medlin, and G.J. Snyder, Adv. Funct. Mater. 21, 241 (2011).CrossRefGoogle Scholar
  87. 87.
    R. Wolfe, J.H. Wernick, and S.E. Haszko, J. Appl. Phys. 31, 1959 (1960).CrossRefGoogle Scholar
  88. 88.
    K. Bergum, T. Ikeda, and G.J. Snyder, J. Solid State Chem. 184, 2543 (2011).CrossRefGoogle Scholar
  89. 89.
    Y.Z. Pei, N.A. Heinz, A. LaLonde, and G.J. Snyder, Energy Environ. Sci. 4, 3640 (2011).CrossRefGoogle Scholar
  90. 90.
    J. Schneider and H. Schulz, Zeitschrift Kristallogr. 203, 1 (1993).CrossRefGoogle Scholar
  91. 91.
    C. Manolikas, J. Solid State Chem. 66, 1 (1987).CrossRefGoogle Scholar
  92. 92.
    J. He, J.R. Sootsman, S.N. Girard, J.-C. Zheng, J. Wen, Y. Zhu, M.G. Kanatzidis, and V.P. Dravid, J. Am. Chem. Soc. 132, 8669 (2010).CrossRefGoogle Scholar
  93. 93.
    S.V. Barabash, V. Ozolins, and C. Wolverton, Phys. Rev. B 78, 214109 (2008).CrossRefGoogle Scholar
  94. 94.
    J.W. Doak and C. Wolverton, Phys. Rev. B 86, 144202 (2012).CrossRefGoogle Scholar
  95. 95.
    W.A. Jesser, Philos. Magn. 19, 993 (1969).CrossRefGoogle Scholar
  96. 96.
    R.W. Armstrong, J.W. Faust, and W.A. Tiller, J. Appl. Phys. 31, 1954 (1960).CrossRefGoogle Scholar
  97. 97.
    T. Ikeda, N.J. Marolf, and G.J. Snyder, Cryst. Growth Des. 11, 4183 (2011).CrossRefGoogle Scholar
  98. 98.
    T. Ikeda, M.B. Toussaint, K. Bergum, S. Iwanaga, and G.J. Snyder, J. Mater. Sci. 46, 3846 (2011).CrossRefGoogle Scholar
  99. 99.
    N.A. Heinz, T. Ikeda, and G.J. Snyder, Acta Mater. 60, 4461 (2012).CrossRefGoogle Scholar
  100. 100.
    X. Chen, S. Cao, T. Ikeda, V. Srivastava, G.J. Snyder, D. Schryvers, and R.D. James, Acta Mater. 59, 6124 (2011).CrossRefGoogle Scholar
  101. 101.
    D.L. Medlin and J.D. Sugar, Scripta Mater. 62, 379 (2010).CrossRefGoogle Scholar
  102. 102.
    N.A. Heinz, T. Ikeda, G.J. Snyder, and D.L. Medlin, Acta Mater. 59, 7724 (2011).CrossRefGoogle Scholar
  103. 103.
    J.P. Hirth, J. Phys. Chem. Solids 55, 985 (1994).CrossRefGoogle Scholar
  104. 104.
    J.P. Hirth and R.C. Pond, Acta Mater. 44, 4749 (1996).CrossRefGoogle Scholar

Copyright information

© TMS (outside the USA) 2013

Authors and Affiliations

  1. 1.Sandia National LaboratoriesLivermoreUSA
  2. 2.California Institute of TechnologyPasadenaUSA

Personalised recommendations