Skip to main content

Multiscale, Multiphysics Numerical Modeling of Fusion Welding with Experimental Characterization and Validation

Abstract

Various physical interfacial phenomena occur during the process of welding and influence the final properties of welded structures. As the features of such interfaces depend on physics that resolve at different spatial scales, a multiscale and multiphysics numerical modeling approach is necessary. In a collaborative research project Modeling of Interface Evolution in Advanced Welding, a novel strategy of model linking is employed in a multiscale, multiphysics computational framework for fusion welding. We only directly link numerical models that are on neighboring spatial scales instead of trying to link all submodels directly together through all available spatial scales. This strategy ensures that the numerical models assist one another via smooth data transfer, avoiding the huge difficulty raised by forcing models to attempt communication over many spatial scales. Experimental activities contribute to the modeling work by providing valuable input parameters and validation data. Representative examples of the results of modeling, linking and characterization are presented.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. 1.

    Z. Jiao, C. Song, T. Lin, and P. He, Comput. Mater. Sci. 50, 3385 (2011).

    Article  Google Scholar 

  2. 2.

    J. Song and D.L. Srolovitz, J. Mech. Phys. Solids 57, 776 (2009).

    Article  Google Scholar 

  3. 3.

    X. Zhan, Y. Wei, and Z. Dong, J. Mater. Process. Technol. 208, 1 (2008).

    Article  Google Scholar 

  4. 4.

    W. Tan, N. Bailey, and Y. Shin, Comput. Mater. Sci. 50, 2573 (2011).

    Article  Google Scholar 

  5. 5.

    J. Zhou and H.L. Tsai, Int. J. Heat Mass Transf. 51, 4353 (2008).

    MATH  Article  Google Scholar 

  6. 6.

    G. Xu, J. Hub, and H.L. Tsai, Int. J. Heat Mass Transf. 52, 1709 (2009).

    MATH  Article  Google Scholar 

  7. 7.

    O. Grong, Metallurgical Modelling of Welding, 2nd rev. ed. (London, U.K.: Maney Publishing, 1997).

  8. 8.

    R.W. Hamilton, D. See, S. Butler, and P.D. Lee, Mater. Sci. Eng. A 343, 290 (2003).

    Article  Google Scholar 

  9. 9.

    P.D. Lee, A. Chirazi, R.C. Atwood, and W. Wang, Mater. Sci. Eng. A 365, 57 (2004).

    Article  Google Scholar 

  10. 10.

    J. Wang, M. Li, J. Allison, and P.D. Lee, J. Appl. Phys. 107, 061804 (2010).

    Article  Google Scholar 

  11. 11.

    M. Tong, J. Liu, Y. Xie, H.B. Dong, R.L. Davidchack, J. Dantzig, D. Ceresoli, N. Marzari, A. Cocks, C. Zhao, I. Richardson, A. Kidess, C. Kleijn, L. Hoglund, S.W. Wen, R. Barnett, and D.J. Browne, IOP Conf. Ser. Mater. Sci. Eng. 33, 012029 (2012).

    Article  Google Scholar 

  12. 12.

    S. McFadden and D.J. Browne, Appl. Math. Model. 33, 1397 (2009).

    MathSciNet  MATH  Article  Google Scholar 

  13. 13.

    W.U. Mirihanage and D.J. Browne, Comput. Mater. Sci. 46, 777 (2009).

    Article  Google Scholar 

  14. 14.

    G.J. Ackland, M.I. Mendelev, D.J. Srolovitz, S. Han, and A.V. Barashev, J. Phys.: Condens. Matter 16, S2629 (2004).

    Article  Google Scholar 

  15. 15.

    B. Echebarria, R. Folch, A. Karma, and M. Plapp, Phys. Rev. E 70, 061604 (2004).

    Article  Google Scholar 

  16. 16.

    J.-H. Jeong, N. Goldenfeld, and J.A. Dantzig, Phys. Rev. E 64, 041602-1 (2001).

    Article  Google Scholar 

  17. 17.

    Y. Xie, H.B. Dong, and J.A. Dantzig (Paper presented at Solidification, EUROMAT 2011, Montpellier, 12–15 September 2011).

  18. 18.

    S.Z. Lu and J.D. Hunt, J. Cryst. Growth 123, 17 (1992).

    Article  Google Scholar 

  19. 19.

    W. Zhang, G.G. Roy, J.W. Elmer, and T. DebRoy, J. Appl. Phys. 93, 3022 (2003).

    Article  Google Scholar 

  20. 20.

    G. Duggan, W.U. Mirihanage, M. Tong, and D.J. Browne, IOP Conf. Ser. Mater. Sci. Eng. 33, 012026 (2012).

    Article  Google Scholar 

  21. 21.

    G. Duggan, M. Tong, and D.J. Browne, IOP Conf. Ser. Mater. Sci. Eng. 27, 012077 (2012).

    Article  Google Scholar 

  22. 22.

    Z. Saldi, A. Kidess, S. Kenjeres, C. Kleijn, C. Zhao, and I. Richardson (Paper presented at the 2nd European Conference on Microfluidics. Société Hydrotechnique de France, SHF, December 2010).

  23. 23.

    M.F. Dodge, H.B. Dong, M. Milititsky, R.P. Barnett, V.F. Marques, and M.F. Gittos (Paper presented at OMAE2012-83402, Rio de Janeiro, 1–6 July 2012).

  24. 24.

    G.I. Barenblatt, Adv. Appl. Mech. 7, 55 (1962).

    MathSciNet  Article  Google Scholar 

  25. 25.

    P. Sofronis, Y. Liang, and N. Aravas, Eur. J. Mech. A 20, 857 (2001).

    MATH  Article  Google Scholar 

Download references

Acknowledgements

This research work is supported by the European Commission as part of the FP7 program, as the project, Modeling of Interface Evolution in Advanced Welding, Contract No. NMP3-SL-2009-229108.

Author information

Affiliations

Authors

Corresponding author

Correspondence to David J. Browne.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Tong, M., Duggan, G., Liu, J. et al. Multiscale, Multiphysics Numerical Modeling of Fusion Welding with Experimental Characterization and Validation. JOM 65, 99–106 (2013). https://doi.org/10.1007/s11837-012-0499-6

Download citation

Keywords

  • Welding
  • Weld Pool
  • Fusion Zone
  • Postweld Heat Treatment
  • Computational Fluid Dynamic Model