Advertisement

JOM

, Volume 65, Issue 1, pp 80–85 | Cite as

The Effects of an Unexpected Ceramic Coating Phase at the Head of a Pipe on Joining and Postprocessing of a Ceramic-Lined Composite Pipe

  • R. MahmoodianEmail author
  • R. G. Rahbari
  • M. Hamdi
  • M. A. Hassan
  • Mahdi Sparham
Article

Produced ceramic-lined steel pipe using the self-propagating high-temperature synthesis (SHS) method has found uses in many applications. A SHS-centrifugal machine was designed to produce a ceramic-lined steel pipe from ferric oxide and aluminum powder (thermite mixture) under high centrifugal acceleration. The obtained products are expected to be Al2O3 ceramic in the innermost layer and a Fe layer in a region between the outer steel pipes. In the present work, specific regions of a pipe was particularly observed to investigate the stuck (dead) spaces at the pipe head because of its importance in further processes (joining, welding, etc.) which may affect the quality of the next operations. In this article, the product’s composition, phase separation, microhardness, and surface finish were studied on three zones of the pipe.

Keywords

Steel Pipe Combustion Synthesis AlFe3 Ceramic Layer Innermost Layer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This study was been supported by University of Malaya student grant, Postgraduate Research Fund (PPP), Malaysia Ministry of Higher Education (MOHE), and the High Impact Research-Joining Technology (HIR-D00000116001). Special thanks are due to Mr. Ali Mahmoodian, the CEO of Azarin Kar Ind. Co., for consulting and facilitating the design and fabrication of the SHS-centrifugal machine’s reaction chamber.

References

  1. 1.
    M.S. Song, M.W. Ran, and Y.Y. Kong, Int. J. Refract. Met. Hard Mater. 29, 601 (2011).CrossRefGoogle Scholar
  2. 2.
    Z.A. Munir and U. Anselmi-Tamburini, Mater. Sci. Eng., R 3, 277 (1989).Google Scholar
  3. 3.
    O. Odawara, Adv. Sci. Technol. 63, 302 (2010).CrossRefGoogle Scholar
  4. 4.
    Z.A. Munir, Am. Ceram. Soc. Bull. 67, 342 (1988).Google Scholar
  5. 5.
    Z.A. Munir, Encyclopedia of Materials: Science and Technology, ed. K.H.J. Buschow, W.C. Robert, C.F. Merton, I. Bernard, J.K. Edward, and M. Subhash (Oxford, U.K.: Elsevier, 2001), p. 8323.CrossRefGoogle Scholar
  6. 6.
    R. Seshadri, Mater. Manuf. Process. 17, 501 (2002).CrossRefGoogle Scholar
  7. 7.
    Y.-F. Wang and Z.-G. Yang, Mater. Sci. Eng., A 460–461, 130 (2007).Google Scholar
  8. 8.
    A.G. Merzhanov, Combustion and Plasma Synthesis of High-Temperature Materials, ed. Z.A. Munir and J.B. Holt (New York: Wiley, 1990).Google Scholar
  9. 9.
    Y. Zhou, C.-J. Li, G.-J. Yang, H.-D. Wang, and G. Li, Intermetallics 18, 2154 (2010).CrossRefGoogle Scholar
  10. 10.
    E. Levashov, V. Kurbatkina, E. Patsera, Y. Pogozhev, S. Rupasov, and A. Rogachev, Russ. J. Non-Ferr. Met. 51, 403 (2010).CrossRefGoogle Scholar
  11. 11.
    Z. Du, H. Fu, H. Fu, and Q. Xiao, Mater. Lett. 59, 1853 (2005).CrossRefGoogle Scholar
  12. 12.
    A.T. Le, D.J. Kim, J.R. Lee, C.G. Kim, and H.S. Chung, Mater. Trans., JIM 49, 1868 (2008).CrossRefGoogle Scholar
  13. 13.
    B. Xu, L. Zhang, C. Wang, and R. Duan, Adv. Mater. Res. 105–106, 12 (2010).CrossRefGoogle Scholar
  14. 14.
    H. Anlauf Sep, Purif. Technol. 58, 242 (2007).CrossRefGoogle Scholar
  15. 15.
    W. Lai, Z.A. Munir, B.J. McCoy, and S.H. Risbud, Scripta Mater. 36, 331 (1997).CrossRefGoogle Scholar
  16. 16.
    Q.S. Meng, S.P. Chen, J.F. Zhao, H. Zhang, H.X. Zhang, and Z.A. Munir, Mater. Sci. Eng., A 456, 332 (2007).CrossRefGoogle Scholar
  17. 17.
    Y. Zhu, S. Sun, H. Ni, and M. Huang, Key Eng. Mater. 464, 434 (2011).CrossRefGoogle Scholar
  18. 18.
    C.L. Yeh and H.J. Wang, Ceram. Int. 37, 1569 (2011).CrossRefGoogle Scholar
  19. 19.
    A.G. Merzhanov, Int. J. Self Propag. High Temp. Synth. 20, 61 (2011).CrossRefGoogle Scholar
  20. 20.
    O. Odawara, J. Am. Ceram. Soc. 73, 629 (1990).CrossRefGoogle Scholar
  21. 21.
    G. Yu, W. Yan, S. Wang, B. Su, and B. Tan, J. Univ. Sci. Technol. B 13, 178 (2006).CrossRefGoogle Scholar
  22. 22.
    S. Zhang, X. Zhou, and D. Qian, Key Eng. Mater. 217 (2002).Google Scholar
  23. 23.
    F. Gao, Z. Guo, and T. Lin, J. Univ. Sci. Technol. B 30, 648 (2008).Google Scholar
  24. 24.
    A.S. Rogachev and F. Baras, Int. J. Self Propag. High Temp. Synth. 16, 141 (2007).CrossRefGoogle Scholar
  25. 25.
    M.T. Le, C.G. Kim, Y.K. Ahn, and H.S. Chung, J. Ceram. Process. Res. 9, 544 (2008).Google Scholar
  26. 26.
    Z.A. Munir, W.N. Lai, S.H. Risbud, and B.J. McCoy, U.S. Patent 6,136,452 (24 October 2000).Google Scholar
  27. 27.
    E. Miyazaki and O. Odawara, Proceeding of the Fourth International Workshop on Material Processing at High Gravity, ed. L. Regal and W.R. Wilcox (New York: Kluwer, 2000), p. 213.Google Scholar
  28. 28.
    R. Orru, B. Simoncini, P.F. Virdis, and G. Cao, Comput. Chem. Eng. 20, S1185 (1996).CrossRefGoogle Scholar
  29. 29.
    V.I. Yukhvid, Pure Appl. Chem. 64, 977 (1992).CrossRefGoogle Scholar
  30. 30.
    O. Odawara, International Symposium on Combustion and Plasma Synthesis of High Temperature Materials, ed. Z.A. Munir (San Francisco, CA: VCH Publishers, 1988), p. 179.Google Scholar
  31. 31.
    M.L. Nayyar, R.C. King, and S. Crocker, Piping Handbook, 7th ed. (New York: McGraw-Hill, 2000).Google Scholar
  32. 32.
    X.B. Lu, J. Liu, J.H. Wen, B.H. Han, J. Yan, and H.P. Cui, Key Eng. Mater. 280, 1771 (2004).CrossRefGoogle Scholar
  33. 33.
    R. Mahmoodian, R.G. Rahbari, M. Hamdi, and M. Sparham, High Temp. Mater. Process., in press.Google Scholar

Copyright information

© TMS 2012

Authors and Affiliations

  • R. Mahmoodian
    • 1
    • 3
    • 4
    Email author
  • R. G. Rahbari
    • 2
  • M. Hamdi
    • 1
    • 3
  • M. A. Hassan
    • 3
    • 5
  • Mahdi Sparham
    • 1
    • 3
  1. 1.Department of Engineering Design and ManufactureUniversity of MalayaKuala LumpurMalaysia
  2. 2.Restorative Dentistry Department, Dentistry FacultyUniversity of TorontoTorontoCanada
  3. 3.Center of Advanced Manufacturing and Materials Processing (AMMP)University of MalayaKuala LumpurMalaysia
  4. 4.Department of Research and DevelopmentAzarin Kar Ind. CoKermanIran
  5. 5.Department of Mechanical EngineeringAssiut UniversityAssiutEgypt

Personalised recommendations