Skip to main content
Log in

Optimization of Fluidized Roasting Reduction of Low-Grade Pyrolusite Using Biogas Residual as Reductant

  • Published:
JOM Aims and scope Submit manuscript

Abstract

Research on the novel technology of fluidized roasting reduction of samples of low-grade pyrolusite using biogas residual as reductant has been conducted. According to the response surface design and the analysis of results, orthogonal experiments have been conducted on the major factors, and the effects on the manganese reduction efficiency have been studied. The maximum manganese reduction efficiency could be optimized to nearly 100%, when the mass ratio of biogas residual to pyrolusite was 0.16:1, the dosage of sulfuric acid was 1.6 times that of the stoichiometric amount, the roasting temperature was 680°C, and the roasting time was 70 min. The results in terms of manganese reduction efficiency of the actual experiments were close to those anticipated by modeling the experiments, indicating that the optimum conditions had a high reliability. Other low-grade pyrolusites such as Guangxi pyrolusite (China), Hunan pyrolusite (China), and Guizhou pyrolusite (China) were tested and all these materials responded well, giving nearly 100% manganese reduction efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. F. Pagnanelli, M. Garavini, F. Vegliò, and L. Toro, Hydrometallurgy 71, 319 (2004).

    Article  Google Scholar 

  2. H. Su, Y. Wen, F. Wang, Y. Sun, and Z. Tong, Hydrometallurgy 93, 136 (2008).

    Article  Google Scholar 

  3. H. Su, H. Liu, F. Wang, X. Lü, and Y. Wen, Chin. J. Chem. Eng. 18, 730 (2010).

    Article  Google Scholar 

  4. R.N. Sahoo, P.K. Naik, and S.C. Das, Hydrometallurgy 62, 157 (2001).

    Article  Google Scholar 

  5. J.M.M. Paixdo, J.C. Amaral, L.E. Memória, and L.R. Freitas, Hydrometallurgy 39, 215 (1995).

    Article  Google Scholar 

  6. T.J.W. De Bruijn, T.H. Soerawidjaja, W.A. De Jongt, and P.J. Van Den Berg, Chem. Eng. Sci. 35, 1591 (1980).

    Article  Google Scholar 

  7. A. Jerez and M.A. Alario, Thermochim. Acta 58, 333 (1982).

    Article  Google Scholar 

  8. J. Chen, P.F. Tian, X.A. Song, N. Li, and J.X. Zhoum, J. Iron. Steel Res. Int. 17, 13 (2010).

    Article  Google Scholar 

  9. Z. Cheng, G. Zhu, and Y. Zhao, Hydrometallurgy 96, 176 (2009).

    Article  Google Scholar 

  10. J.J. Song, G.C. Zhu, P. Zhang, and Y.N. Zhao, Acta Metall. Sin. 23, 223 (2010).

    Google Scholar 

  11. A.G. Kholmogorov, A.M. Zhyzhaev, U.S. Kononov, G.A. Moiseeva, and G.L. Pashkov, Hydrometallurgy 56, 1 (2000).

    Article  Google Scholar 

  12. L. Yaozhong, Miner. Eng. 17, 1053 (2004).

    Article  Google Scholar 

  13. H. Long, L. Chai, and W. Qin, Trans. Nonferr. Met. Soc. China 20, 897 (2010).

    Article  Google Scholar 

  14. T.A. Lasheen, M.N. El Hazek, and A.S. Helal, Hydrometallurgy 98, 314 (2009).

    Article  Google Scholar 

  15. F.W.Y. Momade and Z.G. Momade, Hydrometallurgy 51, 103 (1999).

    Article  Google Scholar 

  16. F.W.Y. Momade and Z.G. Momade, Hydrometallurgy 54, 25 (1999).

    Article  Google Scholar 

  17. D. Hariprasad, B. Dash, M.K. Ghosh, and S. Anand, Miner. Eng. 20, 1293 (2007).

    Article  Google Scholar 

  18. X. Tian, X. Wen, C. Yang, Y. Liang, Z. Pi, and Y. Wang, Hydrometallurgy 100, 157 (2010).

    Article  Google Scholar 

  19. J. Zheng, H. Luo, X. Tian, L. Wang, C. Yang, and Z. Pi, J. China Univ. Geosci. 18, 163 (2007).

    Article  Google Scholar 

  20. M.S. Bafghi, A. Zakeri, Z. Ghasemi, and M. Adeli, Hydrometallurgy 90, 207 (2008).

    Article  Google Scholar 

  21. S.C. Das, P.K. Sahoo, and P.K. Rao, Hydrometallurgy 8, 35 (1982).

    Article  Google Scholar 

  22. M.N. El Hazek, T.A. Lasheen, and A.S. Helal, Hydrometallurgy 84, 187 (2006).

    Article  Google Scholar 

  23. S. Do, B. Batchelor, H. Lee, and S. Kong, Chemosphere 75, 8 (2009).

    Article  Google Scholar 

  24. A.A. Nayl, I.M. Ismail, and H.F. Aly, Int. J. Miner. Process. 100, 116 (2011).

    Article  Google Scholar 

  25. D. Grimanelis, P. Neou-Syngouna, and H. Vazarlis, Hydrometallurgy 31, 139 (1992).

    Article  Google Scholar 

  26. P.K. Naik, L.B. Sukla, and S.C. Das, Hydrometallurgy 54, 217 (2000).

    Article  Google Scholar 

  27. W. Sun, S. Ding, S. Zeng, S. Su, and W. Jiang, J. Hazard. Mater. 192, 124 (2011).

    Article  Google Scholar 

  28. R. Jiao, Energy Conserv. Environ. Protect. 3, 70 (2011).

    Google Scholar 

  29. L. Liu, H. Chen, and Y. Han, Trans. CSAE 26, 277 (2010).

    MATH  Google Scholar 

  30. G. Zhang, S. Wu, H. Wang, S. Wei, K. Wang, Y. Long, and L. Deng, China Biogas 28, 21 (2009).

    Google Scholar 

  31. L. Zhu and J. Lu, J. Agro-Environ. Sci. 26, 176 (2007).

    Google Scholar 

  32. Q. Guo, D. Niu, H. Cheng, and Y. Zhao, China Resourc. Comprehens. Utilization 12, 11 (2005).

    Google Scholar 

  33. C. Namasivayam and R.T. Yamuna, Chemosphere 30, 561 (1995).

    Article  Google Scholar 

  34. C. Namasivayam and R.T. Yamuna, Bioresour. Technol. 52, 125 (1995).

    Article  Google Scholar 

  35. C. Namasivayam and R.T. Yamuna, Environ. Pollut. 89, 1 (1995).

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (no. 21176026), the National High Technology Research and Development Program (863 program) of China (no. 2012AA062401), and the National Key Technology R&D Program of China (no. 2012BAB14B05).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. L. Cai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cai, Z.L., Feng, Y.L., Li, H.R. et al. Optimization of Fluidized Roasting Reduction of Low-Grade Pyrolusite Using Biogas Residual as Reductant. JOM 64, 1296–1304 (2012). https://doi.org/10.1007/s11837-012-0453-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-012-0453-7

Keywords

Navigation