Advertisement

JOM

, Volume 65, Issue 1, pp 44–53 | Cite as

The Impact of the Turing Number on Quantitative ASAXS Measurements of Ternary Alloys

  • Günter Johannes GoerigkEmail author
Article

Abstract

During the last ten years, anomalous small-angle x-ray scattering (ASAXS) became a precise quantitative method resolving scattering contributions two or three orders of magnitude smaller compared with the overall small-angle scattering, which are related to the so-called pure-resonant scattering contribution. The technique gives access to the analysis of weak concentration fluctuations in systems undergoing spinodal decomposition, which cannot be resolved by transmission electron microscopy (TEM) images because these systems are to a large degree homogeneous. In addition to the structural information, precise quantitative information about the different chemical concentrations localized in the nanosized structures of ternary alloys are obtained from these scattering contributions. The application of the Gauss elimination algorithm to the vector equation established by ASAXS measurements at three x-ray energies is demonstrated for two ternary alloys, one in the state of spinodal decomposition. The example deals with the quantitative analysis of the resonant invariant (RI-analysis). From the integrals of the pure-resonant scattering contribution, the chemical concentrations in the nanoscaled phases are determined. Moreover the Turing numbers of the vector equation stated by the ASAXS measurement are calculated giving a decisive quantitative measure thereby indicating whether the quantitative parameters obtained from the matrix inversion are significant.

Keywords

Metallic Glass Matrix Inversion Spinodal Decomposition Concentration Fluctuation Niobium Atom 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The co-operation with the group of N. Mattern, Leibniz-Institute IFW Dresden, Institute for Complex Materials, Dresden, Germany is gratefully acknowledged.

References

  1. 1.
    A. Guinier and G. Fournet, Small-Angle Scattering of X-rays (New York: Wiley, 1955).Google Scholar
  2. 2.
    O. Glatter and O. Kratky, Small-Angle X-ray Scattering (London, U.K.: Academic Press, 1982).Google Scholar
  3. 3.
    O. Kratky, Nova Acta Leopold. 256, 55 (1983).Google Scholar
  4. 4.
    G. Goerigk and N. Mattern, Acta Mater. 57, 3652 (2009).CrossRefGoogle Scholar
  5. 5.
    H.B. Stuhrmann, Adv. Polym. Sci. 67, 123 (1985).CrossRefGoogle Scholar
  6. 6.
    G. Goerigk and N. Mattern, J. Phys. Conf. Ser. 247, 012022 (2010).CrossRefGoogle Scholar
  7. 7.
    G. Goerigk, R. Schweins, K. Huber, and M. Ballauff, Europhys. Lett. 66, 331 (2004).CrossRefGoogle Scholar
  8. 8.
    G. Goerigk, K. Huber, and R. Schweins, J. Chem. Phys. 127, 154908 (2007).CrossRefGoogle Scholar
  9. 9.
    G. Goerigk and D.L. Williamson, J. Appl. Phys. 99, 084309 (2006).CrossRefGoogle Scholar
  10. 10.
    J. Westlake, A Handbook of Numerical Matrix Inversion and Solution of Linear Equations (New York: Wiley, 1968).zbMATHGoogle Scholar
  11. 11.
    J.P. Simon, O. Lyon, and D. de Fontaine, J. Appl. Crystallogr. 18, 230 (1985).CrossRefGoogle Scholar
  12. 12.
    A. Gabriel, Rev. Sci. Instrum. 48, 1303 (1977).CrossRefGoogle Scholar
  13. 13.
    G. Goerigk (HASYLAB Annual Report, 2006), p. 77.Google Scholar
  14. 14.
    H.-G. Haubold, K. Gruenhagen, M. Wagener, H. Jungbluth, H. Heer, A. Pfeil, H. Rongen, G. Brandenburg, R. Moeller, J. Matzerath, P. Hiller, and H. Halling, Rev. Sci. Instrum. 60, 1943 (1989).CrossRefGoogle Scholar
  15. 15.
    N. Mattern, M. Zinkevich, W. Löser, G. Behr, and J.J. Acker, Phase Equilib. Differ. 29, 141 (2008).CrossRefGoogle Scholar
  16. 16.
    N. Mattern, U. Kühn, A. Gebert, T. Gemming, M. Zinkevich, H. Wendrock, and L. Schultz, Scr. Mater. 53, 271 (2005).CrossRefGoogle Scholar
  17. 17.
    N. Mattern, T. Gemming, G. Goerigk, and J. Eckert, Scr. Mater. 57, 29 (2007).CrossRefGoogle Scholar
  18. 18.
    N. Mattern, G. Goerigk, U. Vainio, M.K. Miller, T. Gemming, and J. Eckert, Acta Mater. 57, 903 (2009).CrossRefGoogle Scholar
  19. 19.
    A. Shariq and N. Mattern, Ultramicroscopy 111, 1370 (2011).CrossRefGoogle Scholar
  20. 20.
    G. Goerigk, K. Huber, N. Mattern, and D.L. Williamson, Eur. Phys. J. 208, 259 (2012).Google Scholar

Copyright information

© TMS 2012

Authors and Affiliations

  1. 1.F-I2 Soft Matter and Functional MaterialsHelmholtz-Zentrum Berlin für Materialien und Energie GmbHBerlinGermany

Personalised recommendations