JOM

, Volume 64, Issue 10, pp 1241–1252 | Cite as

Exploring Deformation Mechanisms in Nanostructured Materials

Article

Abstract

Useful properties of structural materials generally depend on their bulk microstructure. For centuries, improvements in structural materials relied heavily on processing, which in turn determined the resulting microstructure and properties. Materials sciences are entering an era in which specific properties of a material are obtained not only from its processing but also by controlling of the architecture of its constituents, often with sub-micron dimensions. To utilize this newly achievable nanoscale engineering precision in structural applications, it is imperative to quantify the deformation processes at each relevant scale, with special attention focusing on the importance of internal and external heterogeneities, for example grain boundaries, bi-material interfaces, phase boundaries, etc., on mechanical loading. It has been shown for single crystals that yield (and fracture) strengths increase with power-law dependence on sample size reduction when the micron scale is reached, and therefore, can no longer be inferred from bulk response or from the literature. Although these studies provide a powerful foundation for fundamental deformation processes operating at small scales, they are far from representing real materials used in structural applications, whose microstructure is often complex, containing boundaries and interfaces. Both homogeneous (i.e. grain and twin boundaries) and heterogeneous (i.e. phase and precipitate–matrix boundaries) interfaces in size-limited features are crucial aspects of the structural reliability of most modern materials. They are also of particular importance to damage initiation. This article provides a comprehensive overview of the state-of-the-art experimental and computational methods used to investigate mechanical behavior and microstructural evolution in small-scale metallic systems, deformation of which depends on intricate interactions of defects with internal interfaces and with free surfaces. Attention is focused on the effects of multiple grain boundaries spanning the sample volume (nanocrystalline and polycrystalline metals). This overview sheds light on the relative importance of intrinsic versus extrinsic length scale limitations on deformation mechanisms in nanostructured metals, which has significant implications for the development of new materials with tunable mechanical properties.

References

  1. 1.
    G.F. Taylor, Phys. Rev. 23, 655 (1924).CrossRefGoogle Scholar
  2. 2.
    S.S. Brenner, J. Appl. Phys. 27, 1484 (1956).CrossRefGoogle Scholar
  3. 3.
    S.S. Brenner, J. Appl. Phys. 28, 1023 (1957).CrossRefGoogle Scholar
  4. 4.
    E.O. Hall, Proc. Phys. Soc. B 64, 742 (1951).CrossRefGoogle Scholar
  5. 5.
    N.J. Petch, J. Iron Steel Inst. 174, 25 (1953).Google Scholar
  6. 6.
    M. Meyers, A. Mishra, and D. Benson, Prog. Mater. Sci. 51, 427 (2006).CrossRefGoogle Scholar
  7. 7.
    J. Eckert, J. Holzer, C. Krill, and W. Johnson, Acta Mater. 55, 3749 (2007).CrossRefGoogle Scholar
  8. 8.
    H. Gleiter, Acta Mater. 48, 1 (2000).CrossRefGoogle Scholar
  9. 9.
    G. Nieman, J. Weertman, and R. Siegel, Scr. Metall. Mater. 24, 145 (1990).CrossRefGoogle Scholar
  10. 10.
    F. Ebrahimi, G. Bourne, M. Kelly, and T. Matthews, Nanostruct. Mater. 11, 343 (1999).CrossRefGoogle Scholar
  11. 11.
    A. Karimpoor, U. Erb, K. Aust, and G. Palumbo, Scripta Mater. 49, 651 (2003).CrossRefGoogle Scholar
  12. 12.
    T. Nieh, and J. Wadsworth, Scr. Metall. Mater. 25, 955 (1991).CrossRefGoogle Scholar
  13. 13.
    J. Eckert, J. Holzer, C. Krill, and W. Johnson, J. Mater. Res. 7, 1751 (1992).CrossRefGoogle Scholar
  14. 14.
    H. Van Swygenhoven, Z. Budrovich, P. Derlet, and A. Hasnaoui, Processing and Properties of Structural Nanomaterials, ed. L. Shaw, C. Suryanarayana, and R. Mishra (Chicago, 2003) pp. 3–10.Google Scholar
  15. 15.
    X. Li, W. Hu, S. Xiao, and W.-Q. Huang, Physica E 40, 3030 (2008).CrossRefGoogle Scholar
  16. 16.
    T.A. Schaedler, A.J. Jacobsen, A. Torrents, A.E. Sorensen, J. Lian, J.R. Greer, L. Valdevit, and W.B. Carter, Science 334, 962 (2011).CrossRefGoogle Scholar
  17. 17.
    J. Lian, D. Jang, L. Valdevit, T.A. Schaedler, A.J. Jacobsen, W.B. Carter, and J.R. Greer, Nano Lett. 11, 4118 (2011).CrossRefGoogle Scholar
  18. 18.
    J. Munilla, M. Castro, and A. Carnicero, Phys. Rev. B 80, 024109 (2009).CrossRefGoogle Scholar
  19. 19.
    J.R. Greer, J.T. De Hosson, and Th.M. Jeff, Prog. Mater. Sci. 56, 654 (2011). ISSN 00796425.Google Scholar
  20. 20.
    T.J. Rupert, D.S. Gianola, Y. Gan, and K.J. Hemker, Science 326, 1686 (2009) ISSN 1095-9203, http://www.ncbi.nlm.nih.gov/pubmed/20019286.
  21. 21.
    J.R. Greer, W.C. Oliver, and W.D. Nix, Acta Mater. 53, 1821 (2005).CrossRefGoogle Scholar
  22. 22.
    M.D. Uchic, D. Dimiduk, J.N. Florando, and W.D. Nix, Science 305, 986 (2004).Google Scholar
  23. 23.
    O. Kraft, P. Gruber, R. Mönig , and D. Weygand, Annu. Rev. Mater. Res. 40, 293 (2010).CrossRefGoogle Scholar
  24. 24.
    G. Dehm, Prog. Mater. Sci. 54, 664 (2009).CrossRefGoogle Scholar
  25. 25.
    M.D. Uchic, P. Shade, and D. Dimiduk, Annu. Rev. Mater. Res. 39, 361 (2009).CrossRefGoogle Scholar
  26. 26.
    D. Kiener, W. Grosinger, G. Dehm, and R. Pippan, Acta Mater. 56, 580 (2008).CrossRefGoogle Scholar
  27. 27.
    D. Kiener, C. Motz, and G. Dehm, Mater. Sci. Eng. A 505, 79 (2009). ISSN 09215093. http://linkinghub.elsevier.com/retrieve/pii/S0921509309000124.
  28. 28.
    D. Kiener, and A.M. Minor, Acta Mater. 59, 1328 (2011). ISSN 13596454. http://linkinghub.elsevier.com/retrieve/pii/S1359645410007391.
  29. 29.
    J.-Y. Kim, D. Jang, and J.R. Greer, Int. J. Plast. (2011).Google Scholar
  30. 30.
    R. Dou, and B. Derby, Scripta Mater. 61, 524 (2009).CrossRefGoogle Scholar
  31. 31.
    D. Dimiduk, M. Uchic, and T. Parthasarathy, Acta Mater. 53, 4065 (2005).CrossRefGoogle Scholar
  32. 32.
    Z.W. Shan, J. Li, Y. Cheng, A.M. Minor, S.A. Syed Asif, O.L. Warren, and E. Ma, Phys. Rev. B 77, 1 (2008). ISSN 13596454.Google Scholar
  33. 33.
    C. Frick, B. Clark, S. Orso, A. Schneider, and E. Arzt, Mater. Sci. Eng. A 489, 319 (2008). ISSN 09215093. http://dx.doi.org/10.1016/j.msea.2007.12.038.
  34. 34.
    R. Maa  L. Meza, B. Gan, S. Tin, and J.R. Greer, Small 8, 1869 (2012). ISSN 1613-6829. http://www.ncbi.nlm.nih.gov/pubmed/22454244.
  35. 35.
    J.R. Greer, and W.D. Nix, Phys. Rev. B 73, 1 (2006).CrossRefGoogle Scholar
  36. 36.
    C.A. Volkert, and E.T. Lilleodden, Phil. Mag. 86, 5567 (2006).CrossRefGoogle Scholar
  37. 37.
    A.S. Budiman, S.M. Han, J.R. Greer, N. Tamura, J. Patel, and W.D. Nix, Acta Mater. 56, 602 (2008).CrossRefGoogle Scholar
  38. 38.
    S.-W. Lee, S. M. Han, and W.D. Nix, Acta Mater. 57: 4404 (2009). ISSN 13596454. http://linkinghub.elsevier.com/retrieve/pii/S1359645409003401.
  39. 39.
    D. Kiener, C. Motz, T. Schoberl, M. Jenko, and G. Dehm, Adv. Eng. Mater.8, 1119 (2006).CrossRefGoogle Scholar
  40. 40.
    D. Kiener, W. Grosinger, and G. Dehm, Scripta Mater. 60, 148 (2009). http://linkinghub.elsevier.com/retrieve/pii/S1359646208006933.
  41. 41.
    D. Kiener, C. Motz, and G. Dehm, Mater. Sci. Eng. A 505, 79 (2009). ISSN 13596462.CrossRefGoogle Scholar
  42. 42.
    R. Maass, S. Van Petegem, D. Grolimund, H. Van Swygenhoven, D. Kiener, and G. Dehm, Appl. Phys. Lett. 92 (2008).Google Scholar
  43. 43.
    A. Jennings, M. Burek, and J. Greer, Phys. Rev. Lett. 135503 (2010).Google Scholar
  44. 44.
    A.T. Jennings, and J.R. Greer, Phil. Mag. 91, 1 (2010).Google Scholar
  45. 45.
    K. Ng, and A.H.W., Ngan, Scripta Mater. 59, 796 (2008).CrossRefGoogle Scholar
  46. 46.
    A. Kunz, S. Pathak, and J.R. Greer, Acta Mater. 59, 4416 (2011).CrossRefGoogle Scholar
  47. 47.
    K.S. Ng, and A.H.W. Ngan, Phil. Mag. 89, 3013 (2009).CrossRefGoogle Scholar
  48. 48.
    J.-Y. Kim, D. Jang, and J. R. Greer,Scripta Mater. 61, 300 (2009). ISSN 13596462.Google Scholar
  49. 49.
    J.-Y. Kim, and J.R. Greer, Acta Mater. 57, 5245 (2009).CrossRefGoogle Scholar
  50. 50.
    A.S. Schneider, B.G. Clark, C.P. Frick, P. Gruber, and E. Arzt, Mater. Sci. Eng. A 508, 241 (2009).CrossRefGoogle Scholar
  51. 51.
    H. Bei, S. Shim, E. George, M. Miller, E. Herbert, and G. Pharr, Scripta Mater. 57, 397 (2007).CrossRefGoogle Scholar
  52. 52.
    H. Bei, Y. Gao, S. Shim, E. George, and G. Pharr, Phys. Rev. B 77, 2 (2008).CrossRefGoogle Scholar
  53. 53.
    H. Bei, E. George, and G. Pharr, Mater. Sci. Eng. A 483–484, 218 (2008).CrossRefGoogle Scholar
  54. 54.
    E. Lilleodden, Scripta Mater. 62, 532 (2010).CrossRefGoogle Scholar
  55. 55.
    C.M. Byer, B. Li, B. Cao, and K. Ramesh,Scripta Mater. 62, 536 (2010).CrossRefGoogle Scholar
  56. 56.
    J. Ye, R.K. Mishra, A.R. Pelton, and A.M. Minor, Acta Mater. 58 (2010).Google Scholar
  57. 57.
    Q. Yu, Z.-W. Shan, J. Li, X. Huang, L. Xiao, J. Sun, and E. Ma, Nature 463, 335 (2010).CrossRefGoogle Scholar
  58. 58.
    Q. Sun, Q. Guo, X. Yao, L. Xiao, J.R. Greer, and J. Sun, Scripta Mater. (2011)Google Scholar
  59. 59.
    S.-W. Lee, and W.D. Nix, Mater. Sci. Eng. A 527, 1903 (2010).CrossRefGoogle Scholar
  60. 60.
    E.A. Withey, A.M. Minor, D.C. Chrzan, J.W. Morris Jr., and S.Kuramoto, Acta Mater. 58, 2652 (2010).CrossRefGoogle Scholar
  61. 61.
    A. Rinaldi, P. Peralta, C. Friesen, and K Sieradzki, Acta Mater. 56, 511 (2008).CrossRefGoogle Scholar
  62. 62.
    D. Jang, and J.R. Greer, Scripta Mater. 64, 77 (2011).CrossRefGoogle Scholar
  63. 63.
    B.G. Clark, D.S. Gianola, O. Kraft, and C.P. Frick, Adv. Eng. Mater. 12, 808 (2010).CrossRefGoogle Scholar
  64. 64.
    C.P. Frick, S. Orso, and E. Arzt, Acta Mater. 55, 3845 (2007).CrossRefGoogle Scholar
  65. 65.
    C.P. Frick, B.G. Clark, S. Orso, P. Sonnweber-Ribic, and E. Arzt, Scripta Mater. 59, 7 (2008).CrossRefGoogle Scholar
  66. 66.
    C.P. Frick, B. Clark, S. Orso, A. Schneider, and E. Arzt, Mater. Sci. Eng. A 489, 319 (2008).CrossRefGoogle Scholar
  67. 67.
    C.P. Frick, B.G. Clark, A.S. Schneider, R. Maaß, S. Van Petegem, and H. Van Swygenhoven, Scripta Mater. 62, 492 (2010).CrossRefGoogle Scholar
  68. 68.
    J. San Juan, M.L. Nó, and C. Schuh, Adv. Mat. 20, 272 (2008).CrossRefGoogle Scholar
  69. 69.
    J.M. San Juan, M.L. Nó, and C. Schuh, Nat Nanotechnol. 4 (2009).Google Scholar
  70. 70.
    D. Jang, and J.R. Greer, Nat. Mater. 9, 215 (2010).Google Scholar
  71. 71.
    D. Jang, C.T. Gross, and J.R. Greer, Int. J. Plast. 27, 858 (2010).CrossRefGoogle Scholar
  72. 72.
    C.A. Volkert, A. Donohue, F. Spaepen, J. Appl. Phys. 103, 83539 (2008).Google Scholar
  73. 73.
    C. Chen, Y.T. Pei, J.T. De Hosson, Phil. Mag. Lett. 89, 633 (2009).CrossRefGoogle Scholar
  74. 74.
    D. Norfleet, D. Dimiduk, S. Polasik, M. Uchic, and M. Mills, Acta Mater. 56, 2988 (2008).CrossRefGoogle Scholar
  75. 75.
    S. Shim, H. Bei, M. Miller, G. Pharr, and E. George, Acta Mater. 57, 503 (2009). ISSN 13596454. http://linkinghub.elsevier.com/retrieve/pii/S1359645408006940.
  76. 76.
    K.E. Johanns, A. Sedlmayr, P. Sudharshan Phani, R. Mönig, O. Kraft, E.P. George, G.M. Pharr, J. Mater. Res. 27, 508 (2012). ISSN 2044-5326. http://journals.cambridge.org/abstract_S0884291411002986.Google Scholar
  77. 77.
    M. Legros, D. S. Gianola, and C. Motz, MRS Bull. 35 (2010).Google Scholar
  78. 78.
    F. Mompiou, and M. Legros, Adv. Eng. Mater. (2012). ISSN 14381656. http://doi.wiley.com/10.1002/adem.201200020.
  79. 79.
    F. Mompiou, M. Legros, A. Sedlmayr, D.S. Gianola, D. Caillard, and O. Kraft, Acta Mater. 60, 977 (2012). ISSN 13596454. http://linkinghub.elsevier.com/retrieve/pii/S1359645411007919
  80. 80.
    A. Jennings, J. Li, and J. Greer, Acta Mater. 59, 5627 (2011).CrossRefGoogle Scholar
  81. 81.
    T. Zhu, J. Li, A. Samanta, A. Leach, and K. Gall, Phys. Rev. Lett. 100, 1 (2008).Google Scholar
  82. 82.
    S.I. Rao, D. Dimiduk, T. Parthasarathy, M. Uchic, M. Tang, and C. Woodward, Acta Mater. 56, 3245 (2008).CrossRefGoogle Scholar
  83. 83.
    T. Parthasarathy, S.I. Rao, D. Dimiduk, M. Uchic, D. Trinkle, Scripta Mater. 56, 313 (2007)CrossRefGoogle Scholar
  84. 84.
    S.I. Rao, D. Dimiduk, M. Tang, T.A. Parthasarathy, M.D. Uchic, and C. Woodward, Phil. Mag. 87, 4777 (2007).CrossRefGoogle Scholar
  85. 85.
    S. Oh, M. Legros, D. Kiener, and G. Dehm, Nat. Mater. 8 (2009).Google Scholar
  86. 86.
    S.I. Rao, M.D. Uchic, P.A. Shade, C. Woodward, and T.A. Parthasarathy, Modell. Simul. Mater. Sci. Eng. 20, 065001 (2012).CrossRefGoogle Scholar
  87. 87.
  88. 88.
    D. Dimiduk, C. Woodward, R. Lesar, and M.D. Uchic, Science 312, 1188 (2006).CrossRefGoogle Scholar
  89. 89.
    J.R. Greer, J.-Y. Kim, and M.J. Burek, J. Mater. 61, 19 (2009).Google Scholar
  90. 90.
    M.J. Burek, J.R. Greer, Nano Lett. 10: 69 (2010). ISSN 1530-6992. http://www.ncbi.nlm.nih.gov/pubmed/19961184.
  91. 91.
    A. Jennings, and J. Greer, J. Mater. Res. 26, 2803 (2011).Google Scholar
  92. 92.
    A.T. Jennings, and J.R. Greer, J. Mater. Res. 26, 2803 (2011). ISSN 0884- 2914. http://www.journals.cambridge.org/abstract_S0884291411003384.
  93. 93.
    C. Weinberger, A. Jennings, K. Kang, and J. Greer, J. Mech. Phys. Solids 60, 84 (2012).Google Scholar
  94. 94.
    A.T. Jennings, C. Gross, F. Greer, Z.H. Aitken, S.-W. Lee, C. Weinberger, and J. Greer, Acta Mater. 60, 3444 (2012).CrossRefGoogle Scholar
  95. 95.
    H. Bei, S. Shim, M. K. Miller, G. Pharr, and E. George, Appl. Phys. Lett.91, 111915 (2007). ISSN 00036951. http://link.aip.org/link/APPLAB/v91/i11/p111915/s1&Agg=doi.Google Scholar
  96. 96.
    D. Daniel, J. Walker, and J. Moore, 7, 53 (1998).Google Scholar
  97. 97.
    J.A. El-Awady, C. Woodward, D. Dimiduk, and N.M. Ghoniem, Phys. Rev. B 80, 1 (2009). ISSN 1098-0121. http://link.aps.org/doi/10.1103/PhysRevB.80.104104.
  98. 98.
    J. Fu , S.B. Joshi, and J.M. Catchmark, J. Micromech. Microeng. 18, 95010 (2008).CrossRefGoogle Scholar
  99. 99.
    W. Moberly-Chan, D. Adams, M. Aziz, G. Hobler, and T. Schenkel, MRS Bull. 32 (2007).Google Scholar
  100. 100.
    S.J.A. Koh, H.P. Lee, C. Lu, and Q.H. Cheng, Phys. Rev. B 72, 085414 (2005).CrossRefGoogle Scholar
  101. 101.
    M. Ke, S.A. Hackney, W.W. Milligan, and E.C. Aifantis, Nanostruct. Mater. 5, 689 (1995).CrossRefGoogle Scholar
  102. 102.
    G. Wang, P. Liaw, Y. Yokoyama, A. Inoue, and C. Liu, Mater. Sci. Eng. A 494, 314 (2008). ISSN 09215093.Google Scholar
  103. 103.
    D. Farkas, S. Mohanty, J. Monk, Mater. Sci. Eng. A 493, 33 (2008), Mechanical Behavior of Nanostructured Materials, a Symposium Held in Honor of Carl Koch at the TMS Annual Meeting 2007, Orlando. Google Scholar
  104. 104.
    J. Monk, and D. Farkas, Phil. Mag. 87, 2233 (2007).CrossRefGoogle Scholar
  105. 105.
    H. Van Swygenhoven, and P.M. Derlet, Phys. Rev. B 64, 224105 (2001).CrossRefGoogle Scholar
  106. 106.
    H. Van Swygenhoven, P. Derlet, and A. Hasnaoui, Phys. Rev. B 66, 024101 (2002).CrossRefGoogle Scholar
  107. 107.
    V. Yamakov, D. Wolf, S.R. Phillpot, A.K. Mukherjee, and H. Gleiter, Nat. Mater. 1, 45 (2002).CrossRefGoogle Scholar
  108. 108.
    W. Yin, S. Whang, and R. Mirshams, Acta Mater. 53, 383 (2005).CrossRefGoogle Scholar
  109. 109.
    S. Frederiksen, K. Jacobsen, and J. Schiotz, Acta Mater. 52, 5019 (2004).CrossRefGoogle Scholar
  110. 110.
    B. Yang, C. Motz, M. Rester, and G. Dehm, Phil. Mag. (2012). doi:DOI:10.1080/14786435.2012.693215.
  111. 111.
    P. Derlet, A. Hasnaoui, and H. Van Swygenhoven, Scripta Mater. 49, 629 (2003).CrossRefGoogle Scholar
  112. 112.
    H. Van Swygenhoven, A. Caro, and D. Farkas, Scripta Mater. 44, 1513 (2001).CrossRefGoogle Scholar
  113. 113.
    P. Derlet, and H. Van Swygenhoven, Scripta Mater. 47, 719 (2002).CrossRefGoogle Scholar
  114. 114.
    H. Van Swygenhoven, P. Derlet, A. Hasnaoui, and M. Samaras, Nanostructures: Synthesis, Functional Properties and Applications, vol. 128, ed. T. Tsakalakos, I. Ovidko, A. Vasudevan (Kluwer Academic Publishers, Dordrecht, 2003) pp. 155–167.Google Scholar
  115. 115.
    V. Yamakov, D. Wolf, S. Phillpot, and H. Gleiter, Acta Mater. 51, 4135 (2003).CrossRefGoogle Scholar
  116. 116.
    E. Rabkin, H.-S. Nam, and D. Srolovitz, Acta Mater. 55, 2085 (2007). ISSN 13596454. http://linkinghub.elsevier.com/retrieve/pii/S1359645406008202
  117. 117.
    E. Rabkin, D.J. Srolovitz, Nano Lett. 7, 101 (2007). ISSN 1530-6984. http://www.ncbi.nlm.nih.gov/pubmed/17212447
  118. 118.
    D. Mordehai, S.-W. Lee, B. Backes, D.J. Srolovitz, W.D. Nix, and E. Rabkin, Acta Mater. 59: 5202 (2011). ISSN 13596454. http://linkinghub.elsevier.com/retrieve/pii/S1359645411003132.Google Scholar
  119. 119.
    M. Horstemeyer, M. Baskes, and S. Plimpton. Acta Mater. 49, 4363 (2001).CrossRefGoogle Scholar
  120. 120.
    H.S. Park, and J.A. Zimmerman, Phys. Rev. B 72, 054106 (2005).CrossRefGoogle Scholar
  121. 121.
    G. Finbow, R. Lynden-Bell, and I. McDonald, Mol. Phys. 92, 705 (1997).CrossRefGoogle Scholar
  122. 122.
    Z. Yang, Z. Lu , and Y.-P. Zhao, Comput. Mater. Sci. 46, 142 (2009).CrossRefGoogle Scholar
  123. 123.
    N.S. Weingarten, and R.L.B. Selinger, Modell. Simul. Mater. Sci. Eng. 19, 015006 (2011).CrossRefGoogle Scholar
  124. 124.
    B.E. Schuster, Q. Wei, H. Zhang, and K.T. Ramesh, Appl. Phys. Lett. 88, 103112 (2006). ISSN 00036951.Google Scholar
  125. 125.
    J.R. Trelewicz, and C.A. Schuh, Acta Mater. 55: 5948 (2007). ISSN 13596454. http://linkinghub.elsevier.com/retrieve/pii/S1359645407004685
  126. 126.
    J. Trelewicz, and C. Schuh, Phys. Rev. B 79 (2009). ISSN 1098-0121. http://prb.aps.org/abstract/PRB/v79/i9/e094112
  127. 127.
    N. Hansen, Acta Metall. 25, 863 (1977). ISSN 00016160. http://linkinghub.elsevier.com/retrieve/pii/0001616077901717.
  128. 128.
    R. Armstrong, J. Mech. Phys. Solids 9, 196 (1961).CrossRefGoogle Scholar
  129. 129.
    J. Schiotz, K. Jacobsen. Science 301, 1357 (2003). http://www.sciencemag.org/cgi/content/abstract/301/5638/1357
  130. 130.
    K. Kumar, S. Suresh, M. Chisholm, J. A. Horton, and P. Wang, Acta Mater. 51, 387 (2003). ISSN 13596454.Google Scholar
  131. 131.
    E. Bitzek, C. Brandl, P. M. Derlet, and H. Van Swygenhoven, Phys. Rev. Lett. 100, 1 (2008). ISSN 0031-9007. http://link.aps.org/doi/10.1103/PhysRevLett.100.235501.
  132. 132.
    D. Jia, K. Ramesh, and E. Ma, Acta Mater. 51, 3495 (2003). ISSN 13596454.Google Scholar
  133. 133.
    D. Huang, and P. Qiao, J. Aerosp. Eng. 24, 147 (2011).CrossRefGoogle Scholar
  134. 134.
    K. Kumar, Acta Mater. 51, 5743 (2003). ISSN 13596454. http://linkinghub.elsevier.com/retrieve/pii/S1359645403005135.
  135. 135.
    D.S. Gianola, S. Van Petegem, M. Legros, S. Brandstetter, H. Van Swygenhoven, and K.J. Hemker, Acta Mater. 54, 2253 (2006).CrossRefGoogle Scholar
  136. 136.
    R.J. Asaro, P. Krysl, B. Kad, Philos. Mag. Lett. 83, 733 (2003). ISSN 0950-0839. http://dx.doi.org/10.1080/09500830310001614540.
  137. 137.
    R.J. Asaro, and S. Suresh, Acta Mater. 53, 3369 (2005). ISSN 13596454.Google Scholar
  138. 138.
    P. Derlet, and H. Van Swygenhoven, Phil. Mag. A 82, 1 (2002). ISSN 0141-8610.Google Scholar
  139. 139.
    G. E. Dieter, Mechanical Metallurgy, 3rd ed. (McGraw-Hill, New York, 1986).Google Scholar
  140. 140.
    C. Can, Senior thesis at Caltech (2011)Google Scholar

Copyright information

© TMS 2012

Authors and Affiliations

  1. 1.Division of Engineering and Applied SciencesCalifornia Institute of Technology (Caltech)PasadenaUnited States
  2. 2.Division of Chemistry and Chemical EngineeringCalifornia Institute of Technology (Caltech)PasadenaUnited States

Personalised recommendations