, Volume 64, Issue 10, pp 1235–1240 | Cite as

The Effect of Size on the Deformation Twinning Behavior in Hexagonal Close-Packed Ti and Mg

  • Qian Yu
  • Raja K. Mishra
  • Andrew M. MinorEmail author


In hexagonal close-packed (HCP) structural materials, the limited activation of different slip mechanisms results in alternative deformation mechanisms, such as twinning, which become relevant to plasticity. As external/internal dimension refinement affects operative mechanisms and is commonly used to tune the mechanical properties of materials, understanding the effect of size on deformation twinning in HCP materials is a critical issue for improving their strength and ductility. Recent in situ and ex situ small-scale testing experiments have generated insights into size effects on twinning by deforming single-crystal systems with different sizes. In this article, we review some of the recent results in this field, including studies of the size-related deformation twinning behavior in Ti, Mg, and their alloys. The effect of size on deformation twinning in these systems is remarkable, resulting in a significant change in the mechanical properties of the materials. Deformation twinning can be restricted by the size effect in certain size regimes and materials but also can be promoted by the presence of surfaces at extremely small scales. The correlation of these two effects in two different HCP materials is discussed.


Grain Boundary Twin Boundary Deformation Twinning Size Regime TWIP Steel 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This research was supported by the General Motors Research and Development Center and performed at the National Center for Electron Microscopy and the Advanced Light Source at Lawrence Berkeley National Laboratory, which is supported by the U.S. Department of Energy under Contract # DE-AC02-05CH11231.


  1. 1.
    M.R. Barnett, Mater. Sci. Eng. A Struct. Mater. Prop. Microstruct. Process. 464, 1 (2007).CrossRefGoogle Scholar
  2. 2.
    J.W. Christian and S. Mahajan, Prog. Mater. Sci. 39, 1 (1995).CrossRefGoogle Scholar
  3. 3.
    M.H. Yoo, Metall. Trans. A 12, 409 (1981).Google Scholar
  4. 4.
    G. Partridge, Met. Rev. 12, 169 (1967).CrossRefGoogle Scholar
  5. 5.
    D.G. Westlake, Acta Metall. 14, 442 (1961).Google Scholar
  6. 6.
    K. Lu, L. Lu, and S. Suresh, Science 324, 349 (2009).CrossRefGoogle Scholar
  7. 7.
    G. Frommeyer, U. Brux, and P. Neumann, ISIJ Int. 43, 438 (2003).CrossRefGoogle Scholar
  8. 8.
    O. Bouaziz, S. Allain, and C. Scott, Scr. Mater. 58, 484 (2008).CrossRefGoogle Scholar
  9. 9.
    X.Y. Lou, M. Li, R.K. Boger, S.R. Agnew, and R.H. Wagoner, Int. J. Plast. 23, 44 (2007).zbMATHCrossRefGoogle Scholar
  10. 10.
    T. Zhu, J. Li, A. Samanta, H.G. Kim, and S. Suresh, Proc. Natl. Acad. Sci. USA 104, 3031 (2007).CrossRefGoogle Scholar
  11. 11.
    J. Koike, Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 36A, 1689 (2005).CrossRefGoogle Scholar
  12. 12.
    O. Kraft, P.A. Gruber, R. Moenig, and D. Weygand, Ann. Rev. Mater. Res. 40, 293 (2010).CrossRefGoogle Scholar
  13. 13.
    J.Y. Zhang, G. Liu, R.H. Wang, J. Li, J. Sun, and E. Ma, Phys. Rev. B 81, 172104 (2010).CrossRefGoogle Scholar
  14. 14.
    K.S. Kumar, H. Van Swygenhoven, and S. Suresh, Acta Mater. 51, 5743 (2003).CrossRefGoogle Scholar
  15. 15.
    M.A. Meyers, A. Mishra, and D.J. Benson, Prog. Mater. Sci. 51, 427 (2006).CrossRefGoogle Scholar
  16. 16.
    M.R. Barnett, D.L. Atwell, and A.G. Beer, Mater. Sci. Forum 558, 433 (2007).CrossRefGoogle Scholar
  17. 17.
    P. Lukáč and Z. Trojanová, Mater. Eng. 18, 111 (2011).Google Scholar
  18. 18.
    P. Lukáč and Z. Trojanová, Mater. Sci. Forum 567, 85 (2008).CrossRefGoogle Scholar
  19. 19.
    M.D. Uchic, D.M. Dimiduk, J.N. Florando, and W.D. Nix, Science 305, 986 (2004).CrossRefGoogle Scholar
  20. 20.
    J. Ye, R.K. Mishra, A.K. Sachdev, and A.M. Minor, Scr. Mater. 64, 292 (2010).CrossRefGoogle Scholar
  21. 21.
    Q. Yu, Z.-W. Shan, J. Li, X. Huang, L. Xiao, J. Sun, and E. Ma, Nature 463, 335 (2010).CrossRefGoogle Scholar
  22. 22.
    Z.W. Shan, R. Mishra, S.A. Syed, O.L. Warren, and A.M. Minor, Nat. Mater. 7, 115 (2008).CrossRefGoogle Scholar
  23. 23.
    H. Bei, S. Shim, E.P. George, M.K. Miller, E.G. Herbert, and G.M. Pharr, Scr. Mater. 57, 397 (2007).CrossRefGoogle Scholar
  24. 24.
    Q. Yu, S.Z. Li, A.M. Minor, J. Sun, and E. Ma, Appl. Phys. Lett. 100, 063109 (2012).CrossRefGoogle Scholar
  25. 25.
    E. Lilleodden, Scr. Mater. 62, 532 (2010).CrossRefGoogle Scholar
  26. 26.
    C.M. Byer, B. Li, B. Cao, and K.T. Ramesh, Scr. Mater. 62, 536 (2010).CrossRefGoogle Scholar
  27. 27.
    Q. Yu, L. Qi, K. Chen, R.K. Mishra, J. Li, and A.M. Minor, Nano Lett. 12, 887 (2012).CrossRefGoogle Scholar
  28. 28.
    N. Thompson and D.J. Millard, Philos. Mag. 43, 422 (1952).Google Scholar
  29. 29.
    J. He and C.M. Lilley, Nano Lett. 8, 1798 (2008).CrossRefGoogle Scholar
  30. 30.
    Z.M. Liao, H.-Z. Zhang, Y.-B. Zhou, J. Xu, J.-M. Zhang, and D.-P. Yu, Phys. Lett. A 372, 4505 (2008).zbMATHCrossRefGoogle Scholar
  31. 31.
    C.M. Julien, A. Mauger, and K. Zaghib, J. Mater. Chem. 21, 9955 (2011).CrossRefGoogle Scholar
  32. 32.
    R.C. Cammarata, Prog. Surf. Sci. 46, 1 (1994).CrossRefGoogle Scholar
  33. 33.
    C. Kelchner, S.J. Plimpton, and J.C. Hamilton, Phys. Rev. B 58, 11085 (1998).CrossRefGoogle Scholar

Copyright information

© TMS (outside the U.S.) 2012

Authors and Affiliations

  1. 1.Department of Materials Science and EngineeringUniversity of CaliforniaBerkeleyUSA
  2. 2.National Center for Electron Microscopy, Lawrence Berkeley National LaboratoryBerkeleyUSA
  3. 3.General Motors Research and Development CenterWarrenUSA

Personalised recommendations