, Volume 64, Issue 10, pp 1229–1234 | Cite as

In Situ TEM Investigation of the Mechanical Behavior of Micronanoscaled Metal Pillars

  • Zhiwei ShanEmail author


In this article, our most recent progress on applying a unique quantitative transmission electron microscope deformation technique on micronanoscaled metal pillars will be reviewed. We found that single-crystal pillars fabricated through focused ion beam always contain high density of defects. However, if the sample size is small enough, then both face-centered-cubic metals and body-centered-cubic metal pillars can experience “mechanical annealing,” i.e., a phenomena referring to the reduction of dislocation density in the deforming volume, when dislocation generation is outweighed by dislocation annihilation through the free surface. We also found that when the sample size was reduced below 1 μm or so, stress saturation and deformation mechanism transition occurred in a hexagonal-close-packed Ti alloy. Unlike crystalline materials, metallic glasses do not allow the presence and movement of dislocations or deformation twinning. However, we demonstrated the metallic glasses also follow the well-established tenet for crystalline materials: i.e., smaller is stronger and can reach its theoretical elastic limit under appropriate testing conditions. In addition, for the tested size regime, we found that high-energy electron beam has no obvious effect on the mechanical properties of materials with metallic bond. However, for materials with covalent bond and ionic bond, significant electron beam effects have been confirmed.


Bulk Metallic Glass Deformation Twinning Image Force Mechanical Annealing External Applied Stress 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by the Grants from NSFC (50925104 and 11132006) and 973 Programs of China (2010CB631003). We also appreciate the support from the 111 Project of China (B06025).


  1. 1.
    M.D. Uchic, D.M. Dimiduk, J.N. Florando, and W.D. Nix, Science 305, 986 (2004).CrossRefGoogle Scholar
  2. 2.
    M.D. Uchic, P.A. Shade, and D.M. Dimiduk, Annual Review of Materials Research, vol. 39 (Palo Alto, CA: Annual Reviews, 2009), pp. 361–386.Google Scholar
  3. 3.
    S.H. Oh, M. Legros, D. Kiener, and G. Dehm, Nat. Mater. 8, 95 (2009).CrossRefGoogle Scholar
  4. 4.
    Z.W. Shan, R.K. Mishra, S.A.S. Asif, O.L. Warren, and A.M. Minor, Nat. Mater. 7, 115 (2008).CrossRefGoogle Scholar
  5. 5.
    J.R. Greer, W.C. Oliver, and W.D. Nix, Acta Mater. 53, 1821 (2005).CrossRefGoogle Scholar
  6. 6.
    W.D. Nix, J.R. Greer, G. Feng, and E.T. Lilleodden, Thin Solid Films 515, 3152 (2007).CrossRefGoogle Scholar
  7. 7.
    L. Huang, Q.J. Li, Z.W. Shan, J. Li, J. Sun, and E. Ma, Nat. Commun. 2, 579 (2011).CrossRefGoogle Scholar
  8. 8.
    C. Chisholm, H. Bei, M.B. Lowry, J. Oh, S.A.A. Asif, O.L. Warren, Z.W. Shan, E.P. George, and A.M. Minor, Acta Mater. 60, 2258 (2012).CrossRefGoogle Scholar
  9. 9.
    Q. Yu, Z.W. Shan, J. Li, X.X. Huang, L. Xiao, J. Sun, and E. Ma, Nature 463, 335 (2010).CrossRefGoogle Scholar
  10. 10.
    L. Tian, Y.Q. Cheng, Z.W. Shan, J. Li, C.C. Wang, X.D. Han, J. Sun, and E. Ma, Nat. Commun. 3, 609 (2012).CrossRefGoogle Scholar
  11. 11.
    Z.W. Shan, J. Li, Y.Q. Cheng, A.M. Minor, S.A.S. Asif, O.L. Warren, and E. Ma, Phys. Rev. B 77, 155419 (2008).CrossRefGoogle Scholar
  12. 12.
    K. Zheng, C.C. Wang, Y.Q. Cheng, Y.H. Yue, X.D. Han, Z. Zhang, Z.W. Shan, S.X. Mao, M.M. Ye, Y.D. Yin, and E. Ma, Nat. Commun. 1, 144 (2010).CrossRefGoogle Scholar
  13. 13.
    O. Kraft, P.A. Gruber, R. Moenig, and D. Weygand, Annual Review of Materials Research, vol. 40, ed. D.R.R.M.Z.F. Clarke (Palo Alto, CA: Annual Reviews, 2010), pp. 293–317.Google Scholar
  14. 14.
    D.S. Gianola and C. Eberl, JOM 61, 24 (2009).CrossRefGoogle Scholar
  15. 15.
    S.S. Brenner, J. Appl. Phys. 27, 1484 (1956).CrossRefGoogle Scholar
  16. 16.
    S.S. Brenner, J. Appl. Phys. 28, 1023 (1957).CrossRefGoogle Scholar
  17. 17.
    S.S. Brenner, Science 128, 568 (1958).CrossRefGoogle Scholar
  18. 18.
    A.M. Minor, S.A.S. Asif, Z.W. Shan, E.A. Stach, E. Cyrankowski, T.J. Wyrobek, and O.L. Warren, Nat. Mater. 5, 697 (2006).CrossRefGoogle Scholar
  19. 19.
    J. Weertman and J.R. Weertman, Elementary Dislocation Theory (New York, NY: Oxford University Press, 1992), pp. 11, 213.Google Scholar
  20. 20.
    Z.J. Wang, Q.J. Li, Z.W. Shan, J. Li, J. Sun, and E. Ma, Appl. Phys. Lett. 100, 122405 (2012).CrossRefGoogle Scholar
  21. 21.
    D. Kiener and A.M. Minor, Acta Mater. 59, 1328 (2011).CrossRefGoogle Scholar
  22. 22.
    C.R. Weinberger and W. Cai, Proc. Natl. Acad. Sci. USA 105, 14304 (2008).CrossRefGoogle Scholar
  23. 23.
    J.R. Greer, C.R. Weinberger, and W. Cai, Mater. Sci. Eng. A 493, 21 (2008).CrossRefGoogle Scholar
  24. 24.
    J.Y. Kim and J.R. Greer, Appl. Phys. Lett. 93, 10916 (2008).Google Scholar
  25. 25.
    S. Brinckmann, J.Y. Kim, and J.R. Greer, Phys. Rev. Lett. 100, 155502 (2008).CrossRefGoogle Scholar
  26. 26.
    J.R. Greer, C.R. Weinberger, and W. Cai, Mater. Sci. Eng. A 493, 21 (2008).CrossRefGoogle Scholar
  27. 27.
    M.A. Meyers, O. Vohringer, and V.A. Lubarda, Acta Mater. 49, 4025 (2001).CrossRefGoogle Scholar
  28. 28.
    J.A. Knapp and D.M. Follstaedt, J. Mater. Res. 19, 218 (2004).CrossRefGoogle Scholar
  29. 29.
    M.D. Uchic, P.A. Shade, and D.M. Dimiduk, JOM 61 (3), 36 (2009).CrossRefGoogle Scholar
  30. 30.
    O. Kraft, Nat. Mater. 9, 295 (2010).CrossRefGoogle Scholar
  31. 31.
    Y.Q. Cheng and E. Ma, Acta Mater. 59, 1800 (2011).CrossRefGoogle Scholar
  32. 32.
    C.C. Wang, J. Ding, Y.Q. Cheng, J.C. Wan, L. Tian, J. Sun, Z.W. Shan, J. Li, and E. Ma, Acta Mater. 60, 5370 (2012).CrossRefGoogle Scholar
  33. 33.
    D.C. Jang and J.R. Greer, Nat. Mater. 9, 215 (2010).Google Scholar
  34. 34.
    Z.J. Wang, Z.W. Shan, J. Li, J. Sun, and E. Ma, Acta Mater. 60, 1368 (2012).CrossRefGoogle Scholar

Copyright information

© TMS 2012

Authors and Affiliations

  1. 1.Center for Advancing Materials Performance from the Nanoscale (CAMP-Nano) & Hysitron Applied Research Center in China (HARCC), State Key Laboratory for Mechanical Behavior of MaterialsXi’an Jiaotong UniversityXi’anPeople’s Republic of China

Personalised recommendations