Bulk Nanostructured Metals for Innovative Applications

Abstract

Nanostructuring of various materials is a key for obtaining extraordinary properties that are very attractive for different structural and functional applications. During the last two decades, the production of bulk nanostructured materials (BNMs) by severe plastic deformation (SPD) techniques has attracted special interest since it offers new opportunities for the fabrication of commercial nanostructured metals and alloys for various specific applications. Very significant progress has been made in this area in recent years, which is evident by the first production of advanced pilot articles from nanostructured metals with new functionality. These aspects of innovations of BNMs processed by SPD are discussed in this overview.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. 1.

    H. Gleiter, Acta Mater. 48, 1 (2000).

    Article  Google Scholar 

  2. 2.

    R.Z. Valiev, Y. Estrin, Z. Horita, T.G. Langdon, M.J. Zehetbauer, and Y.T. Zhu, JOM 58 (4), 33 (2006).

    Article  Google Scholar 

  3. 3.

    R.Z. Valiev, R.K. Islamgaliev, and I.V. Alexandrov, Prog. Mater. Sci. 45, 103 (2000).

    Article  Google Scholar 

  4. 4.

    Y. Zhu, R.Z. Valiev, T.G. Langdon, N. Tsuji, and K. Lu, MRS Bull. 35, 977 (2010).

    Article  Google Scholar 

  5. 5.

    R.Z. Valiev and T.G. Langdon, Metall. Mater. Trans. A 42A, 2942 (2011).

    Article  Google Scholar 

  6. 6.

    A.P. Zhilyaev and T.G. Langdon, Prog. Mater. Sci. 53, 893 (2008).

    Article  Google Scholar 

  7. 7.

    R.Z. Valiev and T.G. Langdon, Prog. Mater. Sci. 51, 881 (2006).

    Article  Google Scholar 

  8. 8.

    G.J. Raab, R.Z. Valiev, T.C. Lowe, and Y.T. Zhu, Mater. Sci. Eng. A 382A, 30 (2004).

    Google Scholar 

  9. 9.

    K. Edalati and Z. Horita, J. Mater. Sci. 45, 4578 (2010).

    Article  Google Scholar 

  10. 10.

    X. Sauvage, G. Wilde, S.V. Divinski, Z. Horita, and R.Z. Valiev, Mater. Sci. Eng. A 540A, 1 (2012).

    Google Scholar 

  11. 11.

    R. Valiev, Nat. Mater. 3, 511 (2004).

    Article  Google Scholar 

  12. 12.

    Y. Zhao, J.F. Bingert, X. Liao, B. Cui, K. Han, A.V. Sergueeva, A.K. Mukherjee, R.Z. Valiev, T.G. Langdon, and Y.T. Zhu, Adv. Mater. 18, 2949 (2006).

    Article  Google Scholar 

  13. 13.

    P.V. Liddicoat, X.Z. Liao, Y. Zhao, Y. Zhu, M.Y. Murashkin, E.J. Lavernia, R.Z. Valiev, and S.P. Ringer, Nat. Commun. 1, 1 (2010).

    Article  Google Scholar 

  14. 14.

    C.C. Koch, Scr. Mater. 49, 657 (2003).

    Article  Google Scholar 

  15. 15.

    N. Krasilnikov, Z. Pakiela, W. Lojkowski, and R. Valiev, Solid State Phenom. 49, 101 (2005).

    Google Scholar 

  16. 16.

    N. Tsuji, Nanostructured Materials by High-Pressure Severe Plastic Deformation, ed. Y.T. Zhu and V. Varyukhin (Amsterdam: Springer, 2006), pp. 227–234.

  17. 17.

    M. Furukawa, Z. Horita, M. Nemoto, R.Z. Valiev, and T.G. Langdon, Phil. Mag. 78, 203 (1998).

    Google Scholar 

  18. 18.

    M. Markushev and M. Murashkin, Mater. Sci. Eng. A 367A, 234 (2004).

    Google Scholar 

  19. 19.

    R.Z. Valiev, N.A. Enikeev, M.Y. Murashkin, V.V. Kazykhanov, and X. Sauvage, Scr. Mater. 63, 949 (2010).

    Article  Google Scholar 

  20. 20.

    T. Fujita, Z. Horita, and T.G. Langdon, Mater. Sci. Eng. A 371A, 241 (2004).

    Google Scholar 

  21. 21.

    R.Z. Valiev, I.V. Alexandrov, Y.T. Zhu, and T.C. Lowe, J. Mater. Res. 17, 5 (2002).

    Article  Google Scholar 

  22. 22.

    Z. Horita, K. Ohashi, T. Fujita, K. Kaneko, and T.G. Langdon, Adv. Mater. 17, 1599 (2005).

    Article  Google Scholar 

  23. 23.

    R.Z. Valiev, M.J. Zehetbauer, Y. Estrin, H.W. Höppel, Y. Ivanisenko, H. Hahn, G. Wilde, H.J. Roven, X. Sauvage, and T.G. Langdon, Adv. Eng. Mater. 9, 527 (2007).

    Article  Google Scholar 

  24. 24.

    V.G. Pushin, D.V. Gunderov, N.I. Kourov, L.I. Yurchenko, E.A. Prokofiev, V.V. Stolyarov, Y.T. Zhu, and R.Z. Valiev, Ultrafine Grained Materials III (Warrendale, PA: TMS, 2004), pp. 481–486.

  25. 25.

    A. Vorhauer, K. Rumpf, P. Granitzer, S. Jleber, H. Krenn, and R. Pippan, Mater. Sci. Forum 503–504, 299 (2006).

    Article  Google Scholar 

  26. 26.

    N. Nita, R. Schaeublin, M. Victoria, and R.Z. Valiev, Phil. Mag. 85, 723 (2005).

    Article  Google Scholar 

  27. 27.

    Z. Horita, M. Furukawa, M. Nemoto, A.J. Barnes, and T.G. Langdon, Acta Mater. 48, 3633 (2000).

    Article  Google Scholar 

  28. 28.

    R.Z. Valiev, R.K. Islamgaliev, I.P. Semenova, and N.F. Yunusova, Int. J. Mater. Res. 98, 314 (2007).

    Google Scholar 

  29. 29.

    T.C. Lowe, JOM 58 (4), 28 (2006).

    Article  Google Scholar 

  30. 30.

    R.Z. Valiev, I.P. Semenova, V.L. Latysh, H. Rack, T.C. Lowe, J. Petruzelka, L. Dluhos, D. Hrusak, and J. Sochova, Adv. Eng. Mater. 10, B15 (2008).

    Article  Google Scholar 

  31. 31.

    R.Z. Valiev, I.P. Semenova, V.V. Latysh, A.V. Shcherbakov, and E.B. Yakushina, Nanotechnol. Russia 3, 593 (2008).

    Article  Google Scholar 

  32. 32.

    Y. Estrin, E.P. Ivanova, A. Michalska, V.K. Truong, R. Lapovok, and R. Boyd, Acta Biomater. 7, 900 (2011).

    Article  Google Scholar 

  33. 33.

    S.D. Prokoshkin, I.Y. Khmelevskaya, S.V. Dobatkin, I.B. Trubitsyna, E.V. Tatyanin, V.V. Stolyarov, and E.A. Prokofiev, Acta Mater. 53, 2703 (2005).

    Article  Google Scholar 

  34. 34.

    R.Z. Valiev, D.V. Gunderov, E.A. Prokofiev, V. Pushin, and Y.T. Zhu, Mater. Trans. 49, 97 (2008).

    Article  Google Scholar 

  35. 35.

    V.V. Stolyarov, E.A. Prokofiev, S.D. Prokoshkin, S.V. Dobatkin, I.B. Trubitsyna, I.Y. Khmelevskaya, V.G. Pushin, and R.Z. Valiev, Phys. Met. Metallogr. 100, 608 (2005).

    Google Scholar 

  36. 36.

    X.H. Chen, L. Lu, and K. Lu, J. Appl. Phys. 102, 083708 (2007).

    Article  Google Scholar 

  37. 37.

    N. Takata, S.H. Lee, and N. Tsuji, Mater. Lett. 63, 1757 (2009).

    Article  Google Scholar 

  38. 38.

    Y. Zhang, Y.S. Li, N.R. Tao, and K. Lu, Appl. Phys. Lett. 91, 211901 (2007).

    Article  Google Scholar 

  39. 39.

    E.V. Bobruk, M.Y. Murashkin, V.U. Kazykhanov, and R.Z. Valiev, Rev. Adv. Mater. Sci. 30 (2012), in press.

  40. 40.

    D.V. Shangina, N.R. Bochvar, and S.V. Dobatkin, J. Mater. Sci.,. doi:10.1007/s10853-012-6525-9 .

  41. 41.

    L. Lu, Y. Shen, X. Chen, L. Qian, and K. Lu, Science 304, 422 (2004).

    Article  Google Scholar 

  42. 42.

    D. Fátay, Á. Révész, and T. Spassov, J. Alloys Compd. 399, 237 (2005).

    Article  Google Scholar 

  43. 43.

    G. Barkhordarian, T. Klassen, and R. Borman, J. Alloys Compd. 364, 242 (2004).

    Article  Google Scholar 

  44. 44.

    V.M. Skripnyuk, E. Rabkin, Y. Estrin, and R. Lapovok, Int. J. Hydrogen Energ. 34, 6320 (2009).

    Article  Google Scholar 

  45. 45.

    Y. Kusadome, K. Ikeda, Y. Nakamori, S. Orimo, and Z. Horita, Scr. Mater. 57, 751 (2007).

    Article  Google Scholar 

  46. 46.

    A. Revesz, Zs. Kanya, T. Verebelyi, P.J. Szabo, A.P. Zhilyaev, and T. Spassov, J Alloys Compd. 504, 83 (2010).

    Article  Google Scholar 

  47. 47.

    X.G. Qiao, N. Gao, Z. Moktadir, M. Kraft, and M.J. Starink, J. Micromech. Microeng. 20, 045029 (2010).

    Article  Google Scholar 

  48. 48.

    N.Q. Chinh, T. Györi, R.Z. Valiev, P. Szommer, G. Varga, K. Havancsák, and T.G. Langdon, MRS Commun..http://dx.doi.org/10.1557/mrc.2012.11.

  49. 49.

    Y. Estrin, M. Janecek, G.I. Raab, R.Z. Valiev, and A. Zi, Metall. Mater. Trans. A 38A, 1906 (2007).

    Article  Google Scholar 

  50. 50.

    V.V. Stolyarov, D.V. Gunderov, R.Z. Valiev, A.G. Popov, V.S. Gaviko, and A.S. Ermolenko, J. Magnet. Magnet. Mater. 196, 166 (1999).

    Article  Google Scholar 

  51. 51.

    A.G. Popov, V.S. Gaviko, N.N. Shchegoleva, L.A. Shreder, D.V. Gunderov, V.V. Stolyarov, W. Li, L.L. Li, and X.Y. Zhang, J. Iron. Steel Res. Int. 13, 160 (2006).

    Article  Google Scholar 

  52. 52.

    E. Menéndez, J. Sort, V. Langlais, A. Zhilyaev, J.S. Muñoz, S. Suriñach, J. Nogués, and M.D. Baró, J. Alloys Compd. 434–435, 505 (2007).

    Article  Google Scholar 

  53. 53.

    G.F. Korznikova and A.V. Korznikov, Mater. Sci. Eng. A 503A, 99 (2009).

    Google Scholar 

  54. 54.

    A. Korneva, M. Bieda, G. Korznikova, K. Sztwiertnia, and A. Korznikov, J. Mater. Res. 99, 991 (2008).

    Article  Google Scholar 

Download references

Acknowledgements

The work of A.P.Z. and T.G.L. was supported by the European Research Council under ERC Grant Agreement No. 267464-SPDMETALS. The work of R.Z.V. was in part supported by the Federal Special-Purpose Program under government contracts and in part by the Russian Foundation for Basic Research. I.S. acknowledges gratefully the Spanish Ministry for Science and Innovation for financial support through the Ramon y Cajal Fellowship.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ruslan Z. Valiev.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Valiev, R.Z., Sabirov, I., Zhilyaev, A.P. et al. Bulk Nanostructured Metals for Innovative Applications. JOM 64, 1134–1142 (2012). https://doi.org/10.1007/s11837-012-0427-9

Download citation

Keywords

  • Severe Plastic Deformation
  • Hydrogen Storage
  • Accumulative Roll Bonding
  • Nanostructured Metal
  • TiNi Alloy