Skip to main content

Recent Advances in Skin-Inspired Sensors Enabled by Nanotechnology

Abstract

The highly optimized performance of nature’s creations and biological assemblies has inspired the development of their bio-inspired artificial counterparts that can potentially outperform conventional systems. In particular, the skin of humans, animals, and insects exhibits unique functionalities and properties and has subsequently led to active research in developing skin-inspired sensors. This paper presents a summary of selected work related to skin-inspired tactile, distributed strain, and artificial hair cell flow sensors, with a particular focus on technologies enabled by recent advancements in the nanotechnology domain. The purpose is not to present a comprehensive review on this broad subject matter but rather to use selected work to outline the diversity of current research activities.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. 1.

    Y. Bar-Cohen, ed., Biomimetics: Biologically Inspired Technologies (Boca Raton, FL: CRC Press, 2006).

    Google Scholar 

  2. 2.

    S. Barbarino, O. Bilgen, R.M. Ajaj, M.I. Friswell, and D.J. Inman, J. Intell. Mater. Syst. Struct. 22, 823 (2011).

    Article  Google Scholar 

  3. 3.

    J.S. Mohammed and W.L. Murphy, Adv. Mater. 21, 2361 (2009).

    Article  Google Scholar 

  4. 4.

    N.H. Siddique and B.P. Amavasai, Artif. Intell. Rev. 27, 131 (2007).

    Article  Google Scholar 

  5. 5.

    J.-Y. Potvin, Stud. Comput. Intell. 161, 1 (2009).

    Article  Google Scholar 

  6. 6.

    A.A. Boghossain, M.-H. Ham, J.H. Choi, and M.S. Strano, Energy Environ. Sci. 4, 3834 (2011).

    Article  Google Scholar 

  7. 7.

    J.T. Devreese, MRS Bull. 32, 718 (2007).

    Article  Google Scholar 

  8. 8.

    C. Hierold, J. Micromech. Microeng. 14, S1 (2004).

    Article  Google Scholar 

  9. 9.

    Y. Bar-Cohen, IEEE Sens. J. 11, 3194 (2011).

    Article  Google Scholar 

  10. 10.

    J. Ou and H. Li, Struct. Health Monit. 9, 219 (2010).

    Article  Google Scholar 

  11. 11.

    C. Krantz-Rulcker, M. Stenberg, F. Winquist, and I. Lundstrom, Anal. Chim. Acta 426, 217 (2001).

    Article  Google Scholar 

  12. 12.

    M.H. Lee and H.R. Nicholls, Mechatronics 9, 1 (1999).

    Article  Google Scholar 

  13. 13.

    Y. Bar-Cohen, J. Mech. Eng. Sci. 221, 1149 (2007).

    Article  Google Scholar 

  14. 14.

    M. Shahinpoor, Y. Bar-Cohen, J.O. Simpson, and J. Smith, Smart Mater. Struct. 7, R15 (1998).

    Article  Google Scholar 

  15. 15.

    J.K. Stroble, R.B. Stone, and S.E. Watkins, Sens. Rev. 29, 112 (2009).

    Article  Google Scholar 

  16. 16.

    L.M. Kindschy and E.C. Alocilja, Trans. ASABE 47, 1375 (2004).

    Google Scholar 

  17. 17.

    R. Bogue, Sens. Rev. 29, 194 (2009).

    Article  Google Scholar 

  18. 18.

    Y. Baba, T. Kitamori, J.P. Lynch, and M. Tomizuka, Proceedings of US–Japan Workshop on Bio-inspired Engineering of Next-Generation Sensors and Actuators (Berkeley, CA, 2011).

  19. 19.

    R.F. Schmidt, Fundamentals of Sensory Physiology, 3rd ed. (New York: Springer, 1986).

    Google Scholar 

  20. 20.

    D.J. Beebe, A.S. Hsieh, D.D. Denton, and R.G. Radwin, Sens. Actuators A 50, 55 (1995).

    Article  Google Scholar 

  21. 21.

    R.S. Dahiya, M. Valle, G. Metta, and L. Lorenzelli, Proceedings of SPIE Bioengineered and Bioinspired Systems IV, vol 7365 (Dresden, 2009), p. 73650D.

  22. 22.

    H.B. Muhammad, C.M. Oddo, L. Beccai, M.J. Adams, M.C. Carrozza, D.W. Hukins, and M.C. Ward, Proc. Chem. 1, 124 (2009).

    Article  Google Scholar 

  23. 23.

    Y. Xu, F. Jiang, S. Newbern, A. Huang, C.-M. Ho, and Y.-C. Tai, Sens. Actuators A 105, 321 (2003).

    Article  Google Scholar 

  24. 24.

    H. Yousef, M. Boukallei, and K. Althoefer, Sens. Actuators A 167, 171 (2011).

    Article  Google Scholar 

  25. 25.

    N. Wettels, V.J. Santos, R.S. Johansson, and G.E. Loeb, Adv. Robot. 22, 829 (2008).

    Article  Google Scholar 

  26. 26.

    N. Jamali and C. Sammut, Proceedings of 2010 IEEE Conference on Robotics and Automation (Anchorage, AK, 2010), pp. 2336–2341.

  27. 27.

    L. Ventrelli, L. Beccai, V. Mattoli, A. Menciassi, and P. Dario, Proceedings of 2009 IEEE International Conference on Robotics and Biomimetics (Guangxi, 2009), pp. 123–128.

  28. 28.

    L. Wang, T. Ding, and P. Wang, Compos. Sci. Technol. 68, 3448 (2008).

    Article  Google Scholar 

  29. 29.

    H.B. Muhammad, C.M. Oddo, L. Beccai, C. Recchiuto, C.J. Anthony, M.J. Adams, M.C. Carrozza, D.W.L. Hukins, and M.C.L. Ward, Sens. Actuators A 165, 221 (2011).

    Article  Google Scholar 

  30. 30.

    T. Someya, Y. Kato, T. Sekitani, S. Iba, Y. Noguchi, Y. Murase, H. Kawaguchi, and T. Sakurai, Proc. Natl. Acad. Sci. USA 102, 12321 (2005).

    Article  Google Scholar 

  31. 31.

    L. Beccai, S. Roccella, L. Ascari, P. Valdastri, A. Sieber, M.C. Carrozza, and P. Dario, IEEE/ASME Trans. Mechatron. 13, 158 (2008).

    Article  Google Scholar 

  32. 32.

    C.M. Oddo, L. Beccai, G.G. Muscolo, and M.C. Carrozza, Proceedings of 2009 IEEE International Conference on Robotics and Biomimetics (Guangxi, 2009), pp. 894–900.

  33. 33.

    T. Mukai, M. Onishi, T. Odashima, S. Hirano, and Z. Luo, IEEE Trans. Robot. 24, 505 (2008).

    Article  Google Scholar 

  34. 34.

    M.-Y. Cheng, C.-L. Lin, Y.-T. Lai, and Y.-J. Yang, Sensors 10, 10211 (2010).

    Article  Google Scholar 

  35. 35.

    H.B. Muhammad, C. Recchiuto, C.M. Oddo, L. Beccai, C.J. Anthony, M.J. Adams, M.C. Carrozza, and M.C.L. Ward, Microelectron. Eng. 88, 1811 (2011).

    Article  Google Scholar 

  36. 36.

    M.I. Tiwana, A. Shashank, S.J. Redmond, and N.H. Lovell, Sens. Actuators A 165, 164 (2011).

    Article  Google Scholar 

  37. 37.

    A. Drimus and A. Bilberg, Intell. Robot. Appl. 7102, 12 (2011).

    Article  Google Scholar 

  38. 38.

    V. Maheshwari and R.F. Saraf, Science 312, 1501 (2006).

    Article  Google Scholar 

  39. 39.

    S. Iijima, Nature 354, 56 (1991).

    Article  Google Scholar 

  40. 40.

    R. Saito, G. Dresselhaus, and M.S. Dresselhaus, Physical Properties of Carbon Nanotubes, 1st ed. (London: Imperial College Press, 1998).

    Book  Google Scholar 

  41. 41.

    R.H. Baughman, A.A. Zakhidov, and W.A. De Heer, Science 297, 787 (2002).

    Article  Google Scholar 

  42. 42.

    P.J.F. Harris, Carbon Nanotube Science: Synthesis, Properties and Applications, rev. and updated edn (Cambridge: Cambridge University Press, 2009).

  43. 43.

    R. Khare and S. Bose, J. Miner. Mater. Charact. Eng. 4, 31 (2005).

    Google Scholar 

  44. 44.

    I. Kang, Y.Y. Heung, J.H. Kim, J.W. Lee, R. Gollapudi, S. Subramaniam, S. Narasimhadevara, D. Hurd, G.R. Kirikera, V. Shanov, M.J. Schulz, D. Shi, J. Boerio, S. Mall, and M. Ruggles-Wren, Compos. B 37, 382 (2006).

    Article  Google Scholar 

  45. 45.

    D.W.H. Fam, A. Palaniappan, A.I.Y. Tok, B. Liedberg, and S.M. Moochhala, Sens. Actuators B 157, 1 (2011).

    Article  Google Scholar 

  46. 46.

    M.E. Mackay, A. Tuteja, P.M. Duxbury, C.J. Hawker, B. Van Horn, Z. Guan, G. Chen, and R.S. Krishman, Science 311, 1740 (2006).

    Article  Google Scholar 

  47. 47.

    G.T. Pham, Y.-B. Park, Z. Liang, C. Zhang, and B. Wang, Compos. B 39, 209 (2008).

    Article  Google Scholar 

  48. 48.

    E.T. Thostenson and T.-W. Chou, J. Phys. D 35, L77 (2002).

    Article  Google Scholar 

  49. 49.

    J.H. Yim, Y.S. Kim, K.H. Koh, and S. Lee, J. Vac. Sci. Technol. B 26, 851 (2008).

    Article  Google Scholar 

  50. 50.

    S.M. Vemuru, R. Wahi, S. Nagarajaiah, and P.M. Ajayan, J. Strain Anal. Eng. Des. 44, 555 (2009).

    Article  Google Scholar 

  51. 51.

    K.J. Loh, J.H. Kim, J.P. Lynch, N.W.S. Kam, and N.A. Kotov, Smart Mater. Struct. 16, 429 (2007).

    Article  Google Scholar 

  52. 52.

    N. Dinh-Trong, J. Steitz, B. Lei, and O. Kanoun, Proceedings of 9th IEEE Conference on Nanotechnology (Genoa, 2009), pp. 477–480.

  53. 53.

    I. Kang, J.W. Lee, G.R. Choi, J.Y. Jung, S.-H. Hwang, Y.-S. Choi, K.J. Yoon, and M.J. Schulz, Key Eng. Mater. 321–323, 140 (2006).

    Article  Google Scholar 

  54. 54.

    O. Breuer and U. Sundararaj, Polym. Compos. 25, 630 (2004).

    Article  Google Scholar 

  55. 55.

    J.N. Coleman, U. Khan, and Y.K. Gun’ko, Adv. Mater. 18, 689 (2006).

    Article  Google Scholar 

  56. 56.

    K.I. Winey, T. Kashiwagi, and M. Mu, MRS Bull. 32, 348 (2007).

    Article  Google Scholar 

  57. 57.

    N. Sinha, J. Ma, and J.T.W. Yeow, J. Nanosci. Nanotechnol. 6, 573 (2006).

    Article  Google Scholar 

  58. 58.

    B. Mahar, C. Laslau, R. Yip, and Y. Sun, IEEE Sens. J. 7, 266 (2007).

    Article  Google Scholar 

  59. 59.

    C. Li, E.T. Thostenson, and T.-W. Chou, Compos. Sci. Technol. 68, 1227 (2008).

    Article  Google Scholar 

  60. 60.

    J.-M. Park, D.-S. Kim, S.-J. Kim, P.-G. Kim, D.-J. Yoon, and L. Devries, Compos. B 38, 847 (2007).

    Article  Google Scholar 

  61. 61.

    E.T. Thostenson and T.-W. Chou, Adv. Mater. 18, 2837 (2006).

    Article  Google Scholar 

  62. 62.

    E.T. Thostenson and T.-W. Chou, Nanotechnology 19, 215713 (2008).

    Google Scholar 

  63. 63.

    L. Böger, M.H.G. Wichmann, L.O. Meyer, and K. Schulte, Compos. Sci. Technol. 68, 1886 (2008).

    Article  Google Scholar 

  64. 64.

    M. Nofar, S.V. Hoa, and M.D. Pugh, Compos. Sci. Technol. 69, 1599 (2009).

    Article  Google Scholar 

  65. 65.

    V. Kostopoulos, A. Vavouliotis, P. Karapappas, P. Tsotra, and A. Paipetis, J. Intell. Mater. Syst. Struct. 20, 1025 (2009).

    Article  Google Scholar 

  66. 66.

    C. Li and T.-W. Chou, Compos. Sci. Technol. 68, 3373 (2008).

    Article  Google Scholar 

  67. 67.

    S.V. Anand and D.R. Mahapatra, Smart Mater. Struct. 18, 045013 (2009).

    Google Scholar 

  68. 68.

    O.J. Aldraihem, W.N. Akl, and A.M. Baz, Sens. Actuators A 149, 233 (2009).

    Article  Google Scholar 

  69. 69.

    H. Rajoria and N. Jalili, Compos. Sci. Technol. 65, 2079 (2005).

    Article  Google Scholar 

  70. 70.

    Y.-H. Yun, V. Shanov, M.J. Schulz, S. Narasimhadevara, S. Subramaniam, D. Hurd, and F.J. Boerio, Smart Mater. Struct. 14, 1526 (2005).

    Article  Google Scholar 

  71. 71.

    P. Dharap, Z. Li, S. Nagarajaiah, and E.V. Barrera, Nanotechnology 15, 379 (2004).

    Article  Google Scholar 

  72. 72.

    I. Kang, M.J. Schulz, J.H. Kim, V. Shanov, and D. Shi, Smart Mater. Struct. 15, 737 (2006).

    Article  Google Scholar 

  73. 73.

    K.J. Loh, J.P. Lynch, and N.A. Kotov, Proceedings of 5th International Workshop on Structural Health Monitoring, vol 2 (Stanford, CA, 2005), pp. 686–694.

  74. 74.

    K.J. Loh, J.P. Lynch, B.S. Shim, and N. Kotov, J. Intell. Mater. Syst. Struct. 19, 747 (2008).

    Article  Google Scholar 

  75. 75.

    B.R. Loyola, V. La Saponara, and K.J. Loh, J. Mater. Sci. 45, 6786 (2010).

    Article  Google Scholar 

  76. 76.

    M. Park, H. Kim, and J.P. Youngblood, Nanotechnology 19, 055705 (2008).

    Google Scholar 

  77. 77.

    N.-K. Chang, C.-C. Su and S.-H. Chang, Appl. Phys. Lett. 92, 063501 (2008).

    Google Scholar 

  78. 78.

    G. Yin, N. Hu, Y. Karube, Y. Liu, Y. Li, and H. Fukunaga, J. Compos. Mater. 45, 1315 (2011).

    Article  Google Scholar 

  79. 79.

    N. Hu, Y. Karube, C. Yan, Z. Masuda, and H. Fukunaga, Acta Mater. 56, 2929 (2008).

    Article  Google Scholar 

  80. 80.

    J.H. Kang, C. Park, J.A. Scholl, A.H. Brazin, N.M. Holloway, J.W. High, S.E. Lowther, and J.S. Harrison, Polym. Phys. 47, 994 (2009).

    Article  Google Scholar 

  81. 81.

    N. Hu, Z. Masuda, G. Yamamoto, H. Fukunaga, T. Hashida, and J. Qiu, Compos. A 39, 893 (2008).

    Article  Google Scholar 

  82. 82.

    R.R. Abdel Chafy, M.H. Arafa, and A.M.K. Esawi, Key Eng. Mater. 495, 33 (2012).

    Article  Google Scholar 

  83. 83.

    K. Lee, S.S. Lee, J.A. Lee, K.-C. Lee, and S. Ji, Appl. Phys. Lett. 96, 013511 (2010).

    Google Scholar 

  84. 84.

    Z. Li, P. Dharap, S. Nagarajaiah, E.V. Barrera, and J.D. Kim, Adv. Mater. 16, 640 (2004).

    Article  Google Scholar 

  85. 85.

    X. Li, C. Levy, and L. Elaadil, Nanotechnology 19, 045501 (2008).

  86. 86.

    J.R. Bautista-Quijano, F. Aviles, J.O. Aguilar, and A. Tapia, Sens. Actuators A 159, 135 (2010).

    Article  Google Scholar 

  87. 87.

    R. Zhang, M. Baxendale, and T. Peijs, Phys. Rev. B 76, 195433 (2007).

    Google Scholar 

  88. 88.

    M. Knite, V. Tupureina, A. Fuith, J. Zavickis, and V. Teteris, Mater. Sci. Eng. C 27, 1125 (2007).

    Article  Google Scholar 

  89. 89.

    S. Jung, T. Ji, J. Xie, and V.K. Varadan, Proceedings of 7th IEEE Conference on Nanotechnology (Hong Kong, 2007), pp. 375–378.

  90. 90.

    W. Zhang, J. Suhr, and N. Koratkar, J. Nanosci. Nanotechnol. 6, 960 (2006).

    Article  Google Scholar 

  91. 91.

    X. Song, S. Liu, Z. Gan, Q. Lv, H. Cao, and H. Yan, Microelectron. Eng. 86, 2330 (2009).

    Article  Google Scholar 

  92. 92.

    J. Suhr, N. Koratkar, P. Keblinski, and P. Ajayan, Nat. Mater. 4, 134 (2005).

    Article  Google Scholar 

  93. 93.

    Y. Zhao, B.R. Loyola, and K.J. Loh, Smart Mater. Struct. 20, 075020 (2011).

    Google Scholar 

  94. 94.

    K. Mukai, K. Asaka, T. Sugino, K. Kiyohara, I. Takeuchi, N. Terasawa, D.N. Futaba, K. Hata, T. Fukushima, and T. Aida, Adv. Mater. 21, 1582 (2009).

    Article  Google Scholar 

  95. 95.

    S. Geier, J. Riemenschneider, T. Mahrholz, P. Wierach, and M. Sinapius, Proceedings of SPIE—Behavior and Mechanics of Multifunctional Materials and Composites, vol 7644 (Bellingham, WA: SPIE, 2010), p. 76441G.

  96. 96.

    Z. Zhang, Y. Liu, and J. Leng, Proceedings of SPIE—Electroactive Polymer Actuators and Devices, vol 7642 (San Diego, CA, 2010), p. 76420S.

  97. 97.

    I.-W.P. Chen, Z. Liang, B. Wang, and C. Zhang, Carbon 48, 1064 (2010).

    Article  Google Scholar 

  98. 98.

    Y.-H. Yun, A. Miskin, P. Kang, S. Jain, S. Narasimhadevara, D. Hurd, V. Shinde, M.J. Schulz, V. Shanov, P. He, F.J. Boerio, D. Shi, and S. Srivinas, J. Intell. Mater. Syst. Struct. 17, 191 (2006).

    Article  Google Scholar 

  99. 99.

    R.H. Baughman, C. Cui, A.A. Zakhidov, Z. Iqbal, J.N. Barisci, G.M. Spinks, G.G. Wallace, A. Mazzoldi, D. De Rossi, A.G. Rinzler, O. Jaschinski, S. Roth, and M. Kertesz, Science 284, 1340 (1999).

    Article  Google Scholar 

  100. 100.

    B.J. Landi, R.P. Raffaelle, M.J. Heben, J.L. Alleman, W. Vanderveer, and T. Gennett, Mater. Sci. Eng. B 116, 359 (2005).

    Article  Google Scholar 

  101. 101.

    A. Ramaratnam and N. Jalili, J. Intell. Mater. Syst. Struct. 17, 199 (2006).

    Article  Google Scholar 

  102. 102.

    I. Kang, G.R. Choi, J.Y. Jung, Y.H. Chang, Y.-S. Choi, and M.J. Schulz, Key Eng. Mater. 326–328, 1447 (2006).

    Article  Google Scholar 

  103. 103.

    T.C. Hou, K.J. Loh, and J.P. Lynch, Nanotechnology 18, 315501 (2007).

    Google Scholar 

  104. 104.

    K.J. Loh, T.-C. Hou, J.P. Lynch, and N.A. Kotov, J. Nondestruct. Eval. 28, 9 (2009).

    Article  Google Scholar 

  105. 105.

    D.S. Holder, eds., Electrical Impedance Tomography Methods, History and Applications (London: The Institute of Physics, 2005).

    Google Scholar 

  106. 106.

    L. Borcea, Inverse Probl. 18, R99 (2002).

    MathSciNet  MATH  Article  Google Scholar 

  107. 107.

    S. Pyo, K.J. Loh, T.-C. Hou, E. Jarva, and J.P. Lynch, Smart Struct. Syst. 8, 139 (2011).

    Google Scholar 

  108. 108.

    H. Alirezaei, A. Nagakubo, and Y. Kuniyoshi, Proceedings of 7th IEEE-RAS International Conference on Humanoid Robots (Pittsburgh, PA, 2007), pp. 167–173.

  109. 109.

    H. Alirezaei, A. Nagakubo, and Y. Kuniyoshi, Proceedings of IEEE Symposium on 3D User Interfaces (Lafayette, LA, 2009), pp. 87–93.

  110. 110.

    I. Frerichs, Physiol. Meas. 21, R1 (2000).

    Article  Google Scholar 

  111. 111.

    Y. Zou and Z. Guo, Med. Eng. Phys. 25, 79 (2003).

    Article  Google Scholar 

  112. 112.

    J.L. Zunino III, Sens. Transducers 84, 51 (2007).

    Google Scholar 

  113. 113.

    U. Tata, S. Deshmukh, J.C. Chiao, R. Carter, and H. Huang, Smart Mater. Struct. 18, 104026 (2009).

    Google Scholar 

  114. 114.

    X. Yi, T. Wu, Y. Wang, R.T. Leon, M.M. Tentzeris, and G. Lantz, Int. J. Smart Nano Mater. 2, 22 (2011).

    Article  Google Scholar 

  115. 115.

    K.J. Loh, J.P. Lynch, and N.A. Kotov, Smart Struct. Syst. 4, 531 (2008).

    Google Scholar 

  116. 116.

    K.J. Loh, J.P. Lynch, and N.A. Kotov, Int. J. Appl. Electromagn. Mech. 28, 87 (2008).

    Google Scholar 

  117. 117.

    S. Coombs, Auton. Robots 11, 255 (2001).

    MATH  Article  Google Scholar 

  118. 118.

    S.K.A. Pfatteicher and M.P. Tongue, Proceedings of 32nd Annual Frontiers in Education, vol 3 (Boston, MA, 2002), S1C-1-6.

  119. 119.

    R.J. Wiegerink, A. Floris, R.K. Jaganatharaja, N. Izadi, T.S.J. Lammerink, and G.J.M. Krijnen, Proceedings of IEEE Sensors 2007 Conference (Atlanta, GA, 2007), pp. 1073–1076.

  120. 120.

    S.A. Sarles, J.D.W. Madden, and D.J. Leo, Soft Matter 7, 4644 (2011).

    Article  Google Scholar 

  121. 121.

    N. Chen, C. Tucker, J.M. Engel, Y. Yang, S. Pandya, and C. Liu, J. Microelectromech. Syst. 16, 999 (2007).

    Article  Google Scholar 

  122. 122.

    G.R. Scholz and C.D. Rahn, IEEE Trans. Robot. Autom. 20, 124 (2004).

    Article  Google Scholar 

  123. 123.

    C. Liu, Bioinspir. Biomim. 2, S162 (2007).

    Article  Google Scholar 

  124. 124.

    J.M. Engel, J. Chen, and C. Liu, J. Microelectromech. Syst. 15, 729 (2006).

    Article  Google Scholar 

  125. 125.

    M.N.M. Nawi, A.A. Manaf, M.R. Arshad, and O. Sidek, Microsyst. Technol. 17, 1417 (2011).

    Article  Google Scholar 

  126. 126.

    M. Dijkstra, J.J. van Baar, R.J. Wiegerink, T.S.J. Lammerink, J.H. de Boer, and G.J.M. Krijnen, J. Micromech. Microeng. 15, S132 (2005).

    Article  Google Scholar 

  127. 127.

    N. Izadi, M.J. de Boer, J.W. Berenschot, and G.J.M. Krijnen, J. Micromech. Microeng. 20, 085041 (2010).

    Google Scholar 

  128. 128.

    K. Shanmuganathan, J.R. Capadona, S.J. Rowan, and C. Weder, J. Mater. Chem. 20, 180 (2010).

    Article  Google Scholar 

  129. 129.

    D.R. Kim, C.H. Lee, and X. Zheng, Nano Lett. 9, 1984 (2009).

    Article  Google Scholar 

  130. 130.

    K. Tonisch, V. Cimalla, F. Will, F. Weise, M. Stubenrauch, A. Albrecht, M. Hoffmann, and O. Ambacher, Phys. E 37, 208 (2007).

    Article  Google Scholar 

  131. 131.

    P.D. Mcgary, L. Tan, J. Zou, B.J.H. Stadler, P.R. Downey, and A.B. Flatau, J. Appl. Phys. 99, 08B310 (2006).

    Google Scholar 

  132. 132.

    R. Jain, F.P. Mccluskey, and A.B. Flatau, IEEE Trans. Compon. Packag. Manuf. Technol. 1, 1 (2011).

    Google Scholar 

  133. 133.

    Y. Lin, Y. Liu, and H.A. Sodano, Appl. Phys. Lett. 95, 122901 (2009).

    Google Scholar 

  134. 134.

    X. Yu, J. Tao, and J. Berilla, Proceedings of SPIE—Nanosensors, Biosensors, and Info-Tech Sensors and Systems, vol 7646 (San Diego, CA, 2010), p. 764618.

  135. 135.

    Z. Zhang, M. Philen, and W. Neu, Smart Mater. Struct. 19, 094017 (2010).

    Article  Google Scholar 

  136. 136.

    W.C. Eberhardt, Y.A. Shakhsheer, B.H. Calhoun, J.R. Paulus, and M. Appleby, Proceedings of 2011 IEEE Sensors (Limerick, 2011), pp. 982–985.

  137. 137.

    J. Tao, X.B. Yu, and J. Berrilla, Proceedings of SPIE Sensors, and Command, Control, Communications, and Intelligence (C3I) Technologies for Homeland Security and Homeland Defense X, vol 8019 (Bellingham, WA, 2011), p. 80190R.

  138. 138.

    S. Ghosh, A.K. Sood, and N. Kumar, Science 299, 1042 (2003).

    Article  Google Scholar 

  139. 139.

    A.K. Sood, S. Ghosh, and N. Kumar, Int. J. Nanosci. 4, 839 (2005).

    Article  Google Scholar 

  140. 140.

    J. Liu, L. Dai, and J.W. Baur, J. Appl. Phys. 101, 064312 (2007).

  141. 141.

    H. Cao, Z. Gan, Q. Lv, H. Yan, X. Luo, X. Song, and S. Liu, Microsyst. Technol. 16, 955 (2010).

    Article  Google Scholar 

  142. 142.

    P.A. Pinto, S.A. Sarles, D.J. Leo, M. Philen, H.A. Champion, S.B. Black, and H.C. Dorn, Proceedings of ASME 2011 Conference on Smart Materials, Adaptive Structures & Intelligent Systems (Scottsdale, AZ, 2011), pp. 1–8.

  143. 143.

    A.V. Singh, A. Rahman, N.V.G. Sudhir Kumar, A.S. Aditi, M. Galluzzi, S. Bovio, S. Barozzi, E. Montani, and D. Parazzoli, Mater. Des. 36, 829 (2012).

    Article  Google Scholar 

  144. 144.

    F. Xia and L. Jiang, Adv. Mater. 20, 2842 (2008).

    Article  Google Scholar 

  145. 145.

    D.J. Irschick, C.C. Austin, K. Petren, R.N. Fisher, J.B. Losos, and O. Ellers, Biol. J. Linn. Soc. 59, 21 (1996).

    Article  Google Scholar 

  146. 146.

    R. Spolenak, S. Gorb, and E. Arzt, Acta Biomater. 1, 5 (2005).

    Article  Google Scholar 

  147. 147.

    B. Bhushan and R.A. Sayer, Microsyst. Technol. 13, 71 (2007).

    Article  Google Scholar 

  148. 148.

    B. Aksak, M.P. Murphy, and M. Sitti, Langmuir 23, 3322 (2007).

    Article  Google Scholar 

  149. 149.

    M.P. Murphy, B. Aksak, and M. Sitti, Small 5, 170 (2009).

    Article  Google Scholar 

  150. 150.

    S. Chen and H. Gao, J. Mech. Phys. Solids 55, 1001 (2007).

    MATH  Article  Google Scholar 

  151. 151.

    M.K. Kwak, H.-E. Jeong, T.-I. Kim, H. Yoon, and K.Y. Suh, Soft Matter 6, 1849 (2010).

    Article  Google Scholar 

  152. 152.

    D. Zhu, X. Yi, Y. Wang, K.-M. Lee, and J. Guo, Smart Mater. Struct. 19, 055011 (2010).

    Google Scholar 

  153. 153.

    H.Y. Erbil, A.L. Demirel, Y. Avci, and O. Mert, Science 299, 1377 (2003).

    Article  Google Scholar 

  154. 154.

    L. Jiang, Y. Zhao, and J. Zhai, Angew. Chem. 116, 4438 (2004).

    Article  Google Scholar 

  155. 155.

    M. Ma and R.M. Hill, Curr. Opin. Colloid Interface Sci. 11, 193 (2006).

    Article  Google Scholar 

  156. 156.

    S.A. Boden and D.M. Bagnall, Prog. Photovol. Res. Appl. 18, 195 (2010).

    Article  Google Scholar 

  157. 157.

    K.S. Toohey, N.R. Sottos, J.A. Lewis, J.S. Moore, and S.R. White, Nat. Mater. 6, 581 (2007).

    Article  Google Scholar 

  158. 158.

    L.J. Bonderer, A.R. Studart, and L.J. Gauckler, Science 319, 1069 (2008).

    Article  Google Scholar 

  159. 159.

    S. Li and K.-W. Wang, J. Intell. Mater. Syst. Struct. 23 (3), 291 (2012).

    Article  Google Scholar 

  160. 160.

    K. Liu and L. Jiang, Nanotoday 6, 155 (2011).

    MathSciNet  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Kenneth J. Loh.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Loh, K.J., Azhari, F. Recent Advances in Skin-Inspired Sensors Enabled by Nanotechnology. JOM 64, 793–801 (2012). https://doi.org/10.1007/s11837-012-0358-5

Download citation

Keywords

  • Electrical Impedance Tomography
  • Tactile Sensor
  • Patch Antenna
  • Flow Sensor
  • Defense Advance Research Project Agency