, Volume 64, Issue 7, pp 793–801 | Cite as

Recent Advances in Skin-Inspired Sensors Enabled by Nanotechnology

  • Kenneth J. Loh
  • Faezeh Azhari


The highly optimized performance of nature’s creations and biological assemblies has inspired the development of their bio-inspired artificial counterparts that can potentially outperform conventional systems. In particular, the skin of humans, animals, and insects exhibits unique functionalities and properties and has subsequently led to active research in developing skin-inspired sensors. This paper presents a summary of selected work related to skin-inspired tactile, distributed strain, and artificial hair cell flow sensors, with a particular focus on technologies enabled by recent advancements in the nanotechnology domain. The purpose is not to present a comprehensive review on this broad subject matter but rather to use selected work to outline the diversity of current research activities.


Electrical Impedance Tomography Tactile Sensor Patch Antenna Flow Sensor Defense Advance Research Project Agency 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Y. Bar-Cohen, ed., Biomimetics: Biologically Inspired Technologies (Boca Raton, FL: CRC Press, 2006).Google Scholar
  2. 2.
    S. Barbarino, O. Bilgen, R.M. Ajaj, M.I. Friswell, and D.J. Inman, J. Intell. Mater. Syst. Struct. 22, 823 (2011).CrossRefGoogle Scholar
  3. 3.
    J.S. Mohammed and W.L. Murphy, Adv. Mater. 21, 2361 (2009).CrossRefGoogle Scholar
  4. 4.
    N.H. Siddique and B.P. Amavasai, Artif. Intell. Rev. 27, 131 (2007).CrossRefGoogle Scholar
  5. 5.
    J.-Y. Potvin, Stud. Comput. Intell. 161, 1 (2009).CrossRefGoogle Scholar
  6. 6.
    A.A. Boghossain, M.-H. Ham, J.H. Choi, and M.S. Strano, Energy Environ. Sci. 4, 3834 (2011).CrossRefGoogle Scholar
  7. 7.
    J.T. Devreese, MRS Bull. 32, 718 (2007).CrossRefGoogle Scholar
  8. 8.
    C. Hierold, J. Micromech. Microeng. 14, S1 (2004).CrossRefGoogle Scholar
  9. 9.
    Y. Bar-Cohen, IEEE Sens. J. 11, 3194 (2011).CrossRefGoogle Scholar
  10. 10.
    J. Ou and H. Li, Struct. Health Monit. 9, 219 (2010).CrossRefGoogle Scholar
  11. 11.
    C. Krantz-Rulcker, M. Stenberg, F. Winquist, and I. Lundstrom, Anal. Chim. Acta 426, 217 (2001).CrossRefGoogle Scholar
  12. 12.
    M.H. Lee and H.R. Nicholls, Mechatronics 9, 1 (1999).CrossRefGoogle Scholar
  13. 13.
    Y. Bar-Cohen, J. Mech. Eng. Sci. 221, 1149 (2007).CrossRefGoogle Scholar
  14. 14.
    M. Shahinpoor, Y. Bar-Cohen, J.O. Simpson, and J. Smith, Smart Mater. Struct. 7, R15 (1998).CrossRefGoogle Scholar
  15. 15.
    J.K. Stroble, R.B. Stone, and S.E. Watkins, Sens. Rev. 29, 112 (2009).CrossRefGoogle Scholar
  16. 16.
    L.M. Kindschy and E.C. Alocilja, Trans. ASABE 47, 1375 (2004).Google Scholar
  17. 17.
    R. Bogue, Sens. Rev. 29, 194 (2009).CrossRefGoogle Scholar
  18. 18.
    Y. Baba, T. Kitamori, J.P. Lynch, and M. Tomizuka, Proceedings of US–Japan Workshop on Bio-inspired Engineering of Next-Generation Sensors and Actuators (Berkeley, CA, 2011).Google Scholar
  19. 19.
    R.F. Schmidt, Fundamentals of Sensory Physiology, 3rd ed. (New York: Springer, 1986).Google Scholar
  20. 20.
    D.J. Beebe, A.S. Hsieh, D.D. Denton, and R.G. Radwin, Sens. Actuators A 50, 55 (1995).CrossRefGoogle Scholar
  21. 21.
    R.S. Dahiya, M. Valle, G. Metta, and L. Lorenzelli, Proceedings of SPIE Bioengineered and Bioinspired Systems IV, vol 7365 (Dresden, 2009), p. 73650D.Google Scholar
  22. 22.
    H.B. Muhammad, C.M. Oddo, L. Beccai, M.J. Adams, M.C. Carrozza, D.W. Hukins, and M.C. Ward, Proc. Chem. 1, 124 (2009).CrossRefGoogle Scholar
  23. 23.
    Y. Xu, F. Jiang, S. Newbern, A. Huang, C.-M. Ho, and Y.-C. Tai, Sens. Actuators A 105, 321 (2003).CrossRefGoogle Scholar
  24. 24.
    H. Yousef, M. Boukallei, and K. Althoefer, Sens. Actuators A 167, 171 (2011).CrossRefGoogle Scholar
  25. 25.
    N. Wettels, V.J. Santos, R.S. Johansson, and G.E. Loeb, Adv. Robot. 22, 829 (2008).CrossRefGoogle Scholar
  26. 26.
    N. Jamali and C. Sammut, Proceedings of 2010 IEEE Conference on Robotics and Automation (Anchorage, AK, 2010), pp. 2336–2341.Google Scholar
  27. 27.
    L. Ventrelli, L. Beccai, V. Mattoli, A. Menciassi, and P. Dario, Proceedings of 2009 IEEE International Conference on Robotics and Biomimetics (Guangxi, 2009), pp. 123–128.Google Scholar
  28. 28.
    L. Wang, T. Ding, and P. Wang, Compos. Sci. Technol. 68, 3448 (2008).CrossRefGoogle Scholar
  29. 29.
    H.B. Muhammad, C.M. Oddo, L. Beccai, C. Recchiuto, C.J. Anthony, M.J. Adams, M.C. Carrozza, D.W.L. Hukins, and M.C.L. Ward, Sens. Actuators A 165, 221 (2011).CrossRefGoogle Scholar
  30. 30.
    T. Someya, Y. Kato, T. Sekitani, S. Iba, Y. Noguchi, Y. Murase, H. Kawaguchi, and T. Sakurai, Proc. Natl. Acad. Sci. USA 102, 12321 (2005).CrossRefGoogle Scholar
  31. 31.
    L. Beccai, S. Roccella, L. Ascari, P. Valdastri, A. Sieber, M.C. Carrozza, and P. Dario, IEEE/ASME Trans. Mechatron. 13, 158 (2008).CrossRefGoogle Scholar
  32. 32.
    C.M. Oddo, L. Beccai, G.G. Muscolo, and M.C. Carrozza, Proceedings of 2009 IEEE International Conference on Robotics and Biomimetics (Guangxi, 2009), pp. 894–900.Google Scholar
  33. 33.
    T. Mukai, M. Onishi, T. Odashima, S. Hirano, and Z. Luo, IEEE Trans. Robot. 24, 505 (2008).CrossRefGoogle Scholar
  34. 34.
    M.-Y. Cheng, C.-L. Lin, Y.-T. Lai, and Y.-J. Yang, Sensors 10, 10211 (2010).CrossRefGoogle Scholar
  35. 35.
    H.B. Muhammad, C. Recchiuto, C.M. Oddo, L. Beccai, C.J. Anthony, M.J. Adams, M.C. Carrozza, and M.C.L. Ward, Microelectron. Eng. 88, 1811 (2011).CrossRefGoogle Scholar
  36. 36.
    M.I. Tiwana, A. Shashank, S.J. Redmond, and N.H. Lovell, Sens. Actuators A 165, 164 (2011).CrossRefGoogle Scholar
  37. 37.
    A. Drimus and A. Bilberg, Intell. Robot. Appl. 7102, 12 (2011).CrossRefGoogle Scholar
  38. 38.
    V. Maheshwari and R.F. Saraf, Science 312, 1501 (2006).CrossRefGoogle Scholar
  39. 39.
    S. Iijima, Nature 354, 56 (1991).CrossRefGoogle Scholar
  40. 40.
    R. Saito, G. Dresselhaus, and M.S. Dresselhaus, Physical Properties of Carbon Nanotubes, 1st ed. (London: Imperial College Press, 1998).CrossRefGoogle Scholar
  41. 41.
    R.H. Baughman, A.A. Zakhidov, and W.A. De Heer, Science 297, 787 (2002).CrossRefGoogle Scholar
  42. 42.
    P.J.F. Harris, Carbon Nanotube Science: Synthesis, Properties and Applications, rev. and updated edn (Cambridge: Cambridge University Press, 2009).Google Scholar
  43. 43.
    R. Khare and S. Bose, J. Miner. Mater. Charact. Eng. 4, 31 (2005).Google Scholar
  44. 44.
    I. Kang, Y.Y. Heung, J.H. Kim, J.W. Lee, R. Gollapudi, S. Subramaniam, S. Narasimhadevara, D. Hurd, G.R. Kirikera, V. Shanov, M.J. Schulz, D. Shi, J. Boerio, S. Mall, and M. Ruggles-Wren, Compos. B 37, 382 (2006).CrossRefGoogle Scholar
  45. 45.
    D.W.H. Fam, A. Palaniappan, A.I.Y. Tok, B. Liedberg, and S.M. Moochhala, Sens. Actuators B 157, 1 (2011).CrossRefGoogle Scholar
  46. 46.
    M.E. Mackay, A. Tuteja, P.M. Duxbury, C.J. Hawker, B. Van Horn, Z. Guan, G. Chen, and R.S. Krishman, Science 311, 1740 (2006).CrossRefGoogle Scholar
  47. 47.
    G.T. Pham, Y.-B. Park, Z. Liang, C. Zhang, and B. Wang, Compos. B 39, 209 (2008).CrossRefGoogle Scholar
  48. 48.
    E.T. Thostenson and T.-W. Chou, J. Phys. D 35, L77 (2002).CrossRefGoogle Scholar
  49. 49.
    J.H. Yim, Y.S. Kim, K.H. Koh, and S. Lee, J. Vac. Sci. Technol. B 26, 851 (2008).CrossRefGoogle Scholar
  50. 50.
    S.M. Vemuru, R. Wahi, S. Nagarajaiah, and P.M. Ajayan, J. Strain Anal. Eng. Des. 44, 555 (2009).CrossRefGoogle Scholar
  51. 51.
    K.J. Loh, J.H. Kim, J.P. Lynch, N.W.S. Kam, and N.A. Kotov, Smart Mater. Struct. 16, 429 (2007).CrossRefGoogle Scholar
  52. 52.
    N. Dinh-Trong, J. Steitz, B. Lei, and O. Kanoun, Proceedings of 9th IEEE Conference on Nanotechnology (Genoa, 2009), pp. 477–480.Google Scholar
  53. 53.
    I. Kang, J.W. Lee, G.R. Choi, J.Y. Jung, S.-H. Hwang, Y.-S. Choi, K.J. Yoon, and M.J. Schulz, Key Eng. Mater. 321–323, 140 (2006).CrossRefGoogle Scholar
  54. 54.
    O. Breuer and U. Sundararaj, Polym. Compos. 25, 630 (2004).CrossRefGoogle Scholar
  55. 55.
    J.N. Coleman, U. Khan, and Y.K. Gun’ko, Adv. Mater. 18, 689 (2006).CrossRefGoogle Scholar
  56. 56.
    K.I. Winey, T. Kashiwagi, and M. Mu, MRS Bull. 32, 348 (2007).CrossRefGoogle Scholar
  57. 57.
    N. Sinha, J. Ma, and J.T.W. Yeow, J. Nanosci. Nanotechnol. 6, 573 (2006).CrossRefGoogle Scholar
  58. 58.
    B. Mahar, C. Laslau, R. Yip, and Y. Sun, IEEE Sens. J. 7, 266 (2007).CrossRefGoogle Scholar
  59. 59.
    C. Li, E.T. Thostenson, and T.-W. Chou, Compos. Sci. Technol. 68, 1227 (2008).CrossRefGoogle Scholar
  60. 60.
    J.-M. Park, D.-S. Kim, S.-J. Kim, P.-G. Kim, D.-J. Yoon, and L. Devries, Compos. B 38, 847 (2007).CrossRefGoogle Scholar
  61. 61.
    E.T. Thostenson and T.-W. Chou, Adv. Mater. 18, 2837 (2006).CrossRefGoogle Scholar
  62. 62.
    E.T. Thostenson and T.-W. Chou, Nanotechnology 19, 215713 (2008).Google Scholar
  63. 63.
    L. Böger, M.H.G. Wichmann, L.O. Meyer, and K. Schulte, Compos. Sci. Technol. 68, 1886 (2008).CrossRefGoogle Scholar
  64. 64.
    M. Nofar, S.V. Hoa, and M.D. Pugh, Compos. Sci. Technol. 69, 1599 (2009).CrossRefGoogle Scholar
  65. 65.
    V. Kostopoulos, A. Vavouliotis, P. Karapappas, P. Tsotra, and A. Paipetis, J. Intell. Mater. Syst. Struct. 20, 1025 (2009).CrossRefGoogle Scholar
  66. 66.
    C. Li and T.-W. Chou, Compos. Sci. Technol. 68, 3373 (2008).CrossRefGoogle Scholar
  67. 67.
    S.V. Anand and D.R. Mahapatra, Smart Mater. Struct. 18, 045013 (2009).Google Scholar
  68. 68.
    O.J. Aldraihem, W.N. Akl, and A.M. Baz, Sens. Actuators A 149, 233 (2009).CrossRefGoogle Scholar
  69. 69.
    H. Rajoria and N. Jalili, Compos. Sci. Technol. 65, 2079 (2005).CrossRefGoogle Scholar
  70. 70.
    Y.-H. Yun, V. Shanov, M.J. Schulz, S. Narasimhadevara, S. Subramaniam, D. Hurd, and F.J. Boerio, Smart Mater. Struct. 14, 1526 (2005).CrossRefGoogle Scholar
  71. 71.
    P. Dharap, Z. Li, S. Nagarajaiah, and E.V. Barrera, Nanotechnology 15, 379 (2004).CrossRefGoogle Scholar
  72. 72.
    I. Kang, M.J. Schulz, J.H. Kim, V. Shanov, and D. Shi, Smart Mater. Struct. 15, 737 (2006).CrossRefGoogle Scholar
  73. 73.
    K.J. Loh, J.P. Lynch, and N.A. Kotov, Proceedings of 5th International Workshop on Structural Health Monitoring, vol 2 (Stanford, CA, 2005), pp. 686–694.Google Scholar
  74. 74.
    K.J. Loh, J.P. Lynch, B.S. Shim, and N. Kotov, J. Intell. Mater. Syst. Struct. 19, 747 (2008).CrossRefGoogle Scholar
  75. 75.
    B.R. Loyola, V. La Saponara, and K.J. Loh, J. Mater. Sci. 45, 6786 (2010).CrossRefGoogle Scholar
  76. 76.
    M. Park, H. Kim, and J.P. Youngblood, Nanotechnology 19, 055705 (2008).Google Scholar
  77. 77.
    N.-K. Chang, C.-C. Su and S.-H. Chang, Appl. Phys. Lett. 92, 063501 (2008).Google Scholar
  78. 78.
    G. Yin, N. Hu, Y. Karube, Y. Liu, Y. Li, and H. Fukunaga, J. Compos. Mater. 45, 1315 (2011).CrossRefGoogle Scholar
  79. 79.
    N. Hu, Y. Karube, C. Yan, Z. Masuda, and H. Fukunaga, Acta Mater. 56, 2929 (2008).CrossRefGoogle Scholar
  80. 80.
    J.H. Kang, C. Park, J.A. Scholl, A.H. Brazin, N.M. Holloway, J.W. High, S.E. Lowther, and J.S. Harrison, Polym. Phys. 47, 994 (2009).CrossRefGoogle Scholar
  81. 81.
    N. Hu, Z. Masuda, G. Yamamoto, H. Fukunaga, T. Hashida, and J. Qiu, Compos. A 39, 893 (2008).CrossRefGoogle Scholar
  82. 82.
    R.R. Abdel Chafy, M.H. Arafa, and A.M.K. Esawi, Key Eng. Mater. 495, 33 (2012).CrossRefGoogle Scholar
  83. 83.
    K. Lee, S.S. Lee, J.A. Lee, K.-C. Lee, and S. Ji, Appl. Phys. Lett. 96, 013511 (2010).Google Scholar
  84. 84.
    Z. Li, P. Dharap, S. Nagarajaiah, E.V. Barrera, and J.D. Kim, Adv. Mater. 16, 640 (2004).CrossRefGoogle Scholar
  85. 85.
    X. Li, C. Levy, and L. Elaadil, Nanotechnology 19, 045501 (2008).Google Scholar
  86. 86.
    J.R. Bautista-Quijano, F. Aviles, J.O. Aguilar, and A. Tapia, Sens. Actuators A 159, 135 (2010).CrossRefGoogle Scholar
  87. 87.
    R. Zhang, M. Baxendale, and T. Peijs, Phys. Rev. B 76, 195433 (2007).Google Scholar
  88. 88.
    M. Knite, V. Tupureina, A. Fuith, J. Zavickis, and V. Teteris, Mater. Sci. Eng. C 27, 1125 (2007).CrossRefGoogle Scholar
  89. 89.
    S. Jung, T. Ji, J. Xie, and V.K. Varadan, Proceedings of 7th IEEE Conference on Nanotechnology (Hong Kong, 2007), pp. 375–378.Google Scholar
  90. 90.
    W. Zhang, J. Suhr, and N. Koratkar, J. Nanosci. Nanotechnol. 6, 960 (2006).CrossRefGoogle Scholar
  91. 91.
    X. Song, S. Liu, Z. Gan, Q. Lv, H. Cao, and H. Yan, Microelectron. Eng. 86, 2330 (2009).CrossRefGoogle Scholar
  92. 92.
    J. Suhr, N. Koratkar, P. Keblinski, and P. Ajayan, Nat. Mater. 4, 134 (2005).CrossRefGoogle Scholar
  93. 93.
    Y. Zhao, B.R. Loyola, and K.J. Loh, Smart Mater. Struct. 20, 075020 (2011).Google Scholar
  94. 94.
    K. Mukai, K. Asaka, T. Sugino, K. Kiyohara, I. Takeuchi, N. Terasawa, D.N. Futaba, K. Hata, T. Fukushima, and T. Aida, Adv. Mater. 21, 1582 (2009).CrossRefGoogle Scholar
  95. 95.
    S. Geier, J. Riemenschneider, T. Mahrholz, P. Wierach, and M. Sinapius, Proceedings of SPIE—Behavior and Mechanics of Multifunctional Materials and Composites, vol 7644 (Bellingham, WA: SPIE, 2010), p. 76441G.Google Scholar
  96. 96.
    Z. Zhang, Y. Liu, and J. Leng, Proceedings of SPIE—Electroactive Polymer Actuators and Devices, vol 7642 (San Diego, CA, 2010), p. 76420S.Google Scholar
  97. 97.
    I.-W.P. Chen, Z. Liang, B. Wang, and C. Zhang, Carbon 48, 1064 (2010).CrossRefGoogle Scholar
  98. 98.
    Y.-H. Yun, A. Miskin, P. Kang, S. Jain, S. Narasimhadevara, D. Hurd, V. Shinde, M.J. Schulz, V. Shanov, P. He, F.J. Boerio, D. Shi, and S. Srivinas, J. Intell. Mater. Syst. Struct. 17, 191 (2006).CrossRefGoogle Scholar
  99. 99.
    R.H. Baughman, C. Cui, A.A. Zakhidov, Z. Iqbal, J.N. Barisci, G.M. Spinks, G.G. Wallace, A. Mazzoldi, D. De Rossi, A.G. Rinzler, O. Jaschinski, S. Roth, and M. Kertesz, Science 284, 1340 (1999).CrossRefGoogle Scholar
  100. 100.
    B.J. Landi, R.P. Raffaelle, M.J. Heben, J.L. Alleman, W. Vanderveer, and T. Gennett, Mater. Sci. Eng. B 116, 359 (2005).CrossRefGoogle Scholar
  101. 101.
    A. Ramaratnam and N. Jalili, J. Intell. Mater. Syst. Struct. 17, 199 (2006).CrossRefGoogle Scholar
  102. 102.
    I. Kang, G.R. Choi, J.Y. Jung, Y.H. Chang, Y.-S. Choi, and M.J. Schulz, Key Eng. Mater. 326–328, 1447 (2006).CrossRefGoogle Scholar
  103. 103.
    T.C. Hou, K.J. Loh, and J.P. Lynch, Nanotechnology 18, 315501 (2007).Google Scholar
  104. 104.
    K.J. Loh, T.-C. Hou, J.P. Lynch, and N.A. Kotov, J. Nondestruct. Eval. 28, 9 (2009).CrossRefGoogle Scholar
  105. 105.
    D.S. Holder, eds., Electrical Impedance Tomography Methods, History and Applications (London: The Institute of Physics, 2005).Google Scholar
  106. 106.
    L. Borcea, Inverse Probl. 18, R99 (2002).MathSciNetzbMATHCrossRefGoogle Scholar
  107. 107.
    S. Pyo, K.J. Loh, T.-C. Hou, E. Jarva, and J.P. Lynch, Smart Struct. Syst. 8, 139 (2011).Google Scholar
  108. 108.
    H. Alirezaei, A. Nagakubo, and Y. Kuniyoshi, Proceedings of 7th IEEE-RAS International Conference on Humanoid Robots (Pittsburgh, PA, 2007), pp. 167–173.Google Scholar
  109. 109.
    H. Alirezaei, A. Nagakubo, and Y. Kuniyoshi, Proceedings of IEEE Symposium on 3D User Interfaces (Lafayette, LA, 2009), pp. 87–93.Google Scholar
  110. 110.
    I. Frerichs, Physiol. Meas. 21, R1 (2000).CrossRefGoogle Scholar
  111. 111.
    Y. Zou and Z. Guo, Med. Eng. Phys. 25, 79 (2003).CrossRefGoogle Scholar
  112. 112.
    J.L. Zunino III, Sens. Transducers 84, 51 (2007).Google Scholar
  113. 113.
    U. Tata, S. Deshmukh, J.C. Chiao, R. Carter, and H. Huang, Smart Mater. Struct. 18, 104026 (2009).Google Scholar
  114. 114.
    X. Yi, T. Wu, Y. Wang, R.T. Leon, M.M. Tentzeris, and G. Lantz, Int. J. Smart Nano Mater. 2, 22 (2011).CrossRefGoogle Scholar
  115. 115.
    K.J. Loh, J.P. Lynch, and N.A. Kotov, Smart Struct. Syst. 4, 531 (2008).Google Scholar
  116. 116.
    K.J. Loh, J.P. Lynch, and N.A. Kotov, Int. J. Appl. Electromagn. Mech. 28, 87 (2008).Google Scholar
  117. 117.
    S. Coombs, Auton. Robots 11, 255 (2001).zbMATHCrossRefGoogle Scholar
  118. 118.
    S.K.A. Pfatteicher and M.P. Tongue, Proceedings of 32nd Annual Frontiers in Education, vol 3 (Boston, MA, 2002), S1C-1-6.Google Scholar
  119. 119.
    R.J. Wiegerink, A. Floris, R.K. Jaganatharaja, N. Izadi, T.S.J. Lammerink, and G.J.M. Krijnen, Proceedings of IEEE Sensors 2007 Conference (Atlanta, GA, 2007), pp. 1073–1076.Google Scholar
  120. 120.
    S.A. Sarles, J.D.W. Madden, and D.J. Leo, Soft Matter 7, 4644 (2011).CrossRefGoogle Scholar
  121. 121.
    N. Chen, C. Tucker, J.M. Engel, Y. Yang, S. Pandya, and C. Liu, J. Microelectromech. Syst. 16, 999 (2007).CrossRefGoogle Scholar
  122. 122.
    G.R. Scholz and C.D. Rahn, IEEE Trans. Robot. Autom. 20, 124 (2004).CrossRefGoogle Scholar
  123. 123.
    C. Liu, Bioinspir. Biomim. 2, S162 (2007).CrossRefGoogle Scholar
  124. 124.
    J.M. Engel, J. Chen, and C. Liu, J. Microelectromech. Syst. 15, 729 (2006).CrossRefGoogle Scholar
  125. 125.
    M.N.M. Nawi, A.A. Manaf, M.R. Arshad, and O. Sidek, Microsyst. Technol. 17, 1417 (2011).CrossRefGoogle Scholar
  126. 126.
    M. Dijkstra, J.J. van Baar, R.J. Wiegerink, T.S.J. Lammerink, J.H. de Boer, and G.J.M. Krijnen, J. Micromech. Microeng. 15, S132 (2005).CrossRefGoogle Scholar
  127. 127.
    N. Izadi, M.J. de Boer, J.W. Berenschot, and G.J.M. Krijnen, J. Micromech. Microeng. 20, 085041 (2010).Google Scholar
  128. 128.
    K. Shanmuganathan, J.R. Capadona, S.J. Rowan, and C. Weder, J. Mater. Chem. 20, 180 (2010).CrossRefGoogle Scholar
  129. 129.
    D.R. Kim, C.H. Lee, and X. Zheng, Nano Lett. 9, 1984 (2009).CrossRefGoogle Scholar
  130. 130.
    K. Tonisch, V. Cimalla, F. Will, F. Weise, M. Stubenrauch, A. Albrecht, M. Hoffmann, and O. Ambacher, Phys. E 37, 208 (2007).CrossRefGoogle Scholar
  131. 131.
    P.D. Mcgary, L. Tan, J. Zou, B.J.H. Stadler, P.R. Downey, and A.B. Flatau, J. Appl. Phys. 99, 08B310 (2006).Google Scholar
  132. 132.
    R. Jain, F.P. Mccluskey, and A.B. Flatau, IEEE Trans. Compon. Packag. Manuf. Technol. 1, 1 (2011).Google Scholar
  133. 133.
    Y. Lin, Y. Liu, and H.A. Sodano, Appl. Phys. Lett. 95, 122901 (2009).Google Scholar
  134. 134.
    X. Yu, J. Tao, and J. Berilla, Proceedings of SPIE—Nanosensors, Biosensors, and Info-Tech Sensors and Systems, vol 7646 (San Diego, CA, 2010), p. 764618.Google Scholar
  135. 135.
    Z. Zhang, M. Philen, and W. Neu, Smart Mater. Struct. 19, 094017 (2010).CrossRefGoogle Scholar
  136. 136.
    W.C. Eberhardt, Y.A. Shakhsheer, B.H. Calhoun, J.R. Paulus, and M. Appleby, Proceedings of 2011 IEEE Sensors (Limerick, 2011), pp. 982–985.Google Scholar
  137. 137.
    J. Tao, X.B. Yu, and J. Berrilla, Proceedings of SPIE Sensors, and Command, Control, Communications, and Intelligence (C3I) Technologies for Homeland Security and Homeland Defense X, vol 8019 (Bellingham, WA, 2011), p. 80190R.Google Scholar
  138. 138.
    S. Ghosh, A.K. Sood, and N. Kumar, Science 299, 1042 (2003).CrossRefGoogle Scholar
  139. 139.
    A.K. Sood, S. Ghosh, and N. Kumar, Int. J. Nanosci. 4, 839 (2005).CrossRefGoogle Scholar
  140. 140.
    J. Liu, L. Dai, and J.W. Baur, J. Appl. Phys. 101, 064312 (2007).Google Scholar
  141. 141.
    H. Cao, Z. Gan, Q. Lv, H. Yan, X. Luo, X. Song, and S. Liu, Microsyst. Technol. 16, 955 (2010).CrossRefGoogle Scholar
  142. 142.
    P.A. Pinto, S.A. Sarles, D.J. Leo, M. Philen, H.A. Champion, S.B. Black, and H.C. Dorn, Proceedings of ASME 2011 Conference on Smart Materials, Adaptive Structures & Intelligent Systems (Scottsdale, AZ, 2011), pp. 1–8.Google Scholar
  143. 143.
    A.V. Singh, A. Rahman, N.V.G. Sudhir Kumar, A.S. Aditi, M. Galluzzi, S. Bovio, S. Barozzi, E. Montani, and D. Parazzoli, Mater. Des. 36, 829 (2012).CrossRefGoogle Scholar
  144. 144.
    F. Xia and L. Jiang, Adv. Mater. 20, 2842 (2008).CrossRefGoogle Scholar
  145. 145.
    D.J. Irschick, C.C. Austin, K. Petren, R.N. Fisher, J.B. Losos, and O. Ellers, Biol. J. Linn. Soc. 59, 21 (1996).CrossRefGoogle Scholar
  146. 146.
    R. Spolenak, S. Gorb, and E. Arzt, Acta Biomater. 1, 5 (2005).CrossRefGoogle Scholar
  147. 147.
    B. Bhushan and R.A. Sayer, Microsyst. Technol. 13, 71 (2007).CrossRefGoogle Scholar
  148. 148.
    B. Aksak, M.P. Murphy, and M. Sitti, Langmuir 23, 3322 (2007).CrossRefGoogle Scholar
  149. 149.
    M.P. Murphy, B. Aksak, and M. Sitti, Small 5, 170 (2009).CrossRefGoogle Scholar
  150. 150.
    S. Chen and H. Gao, J. Mech. Phys. Solids 55, 1001 (2007).zbMATHCrossRefGoogle Scholar
  151. 151.
    M.K. Kwak, H.-E. Jeong, T.-I. Kim, H. Yoon, and K.Y. Suh, Soft Matter 6, 1849 (2010).CrossRefGoogle Scholar
  152. 152.
    D. Zhu, X. Yi, Y. Wang, K.-M. Lee, and J. Guo, Smart Mater. Struct. 19, 055011 (2010).Google Scholar
  153. 153.
    H.Y. Erbil, A.L. Demirel, Y. Avci, and O. Mert, Science 299, 1377 (2003).CrossRefGoogle Scholar
  154. 154.
    L. Jiang, Y. Zhao, and J. Zhai, Angew. Chem. 116, 4438 (2004).CrossRefGoogle Scholar
  155. 155.
    M. Ma and R.M. Hill, Curr. Opin. Colloid Interface Sci. 11, 193 (2006).CrossRefGoogle Scholar
  156. 156.
    S.A. Boden and D.M. Bagnall, Prog. Photovol. Res. Appl. 18, 195 (2010).CrossRefGoogle Scholar
  157. 157.
    K.S. Toohey, N.R. Sottos, J.A. Lewis, J.S. Moore, and S.R. White, Nat. Mater. 6, 581 (2007).CrossRefGoogle Scholar
  158. 158.
    L.J. Bonderer, A.R. Studart, and L.J. Gauckler, Science 319, 1069 (2008).CrossRefGoogle Scholar
  159. 159.
    S. Li and K.-W. Wang, J. Intell. Mater. Syst. Struct. 23 (3), 291 (2012).CrossRefGoogle Scholar
  160. 160.
    K. Liu and L. Jiang, Nanotoday 6, 155 (2011).MathSciNetGoogle Scholar

Copyright information

© TMS 2012

Authors and Affiliations

  1. 1.Department of Civil & Environmental EngineeringUniversity of CaliforniaDavisUSA

Personalised recommendations