Skip to main content

Texture Evolution in a Ti-Ta-Nb Alloy Processed by Severe Plastic Deformation

Abstract

Titanium alloys are extensively used in a variety of applications because of their good mechanical properties, high biocompatibility, and corrosion resistance. Recently, β-type Ti alloys containing Ta and Nb have received much attention because they feature not only high specific strength but also biocorrosion resistance, no allergic problems, and biocompatibility. A Ti-25Ta-25Nb β-type titanium alloy was subjected to severe plastic deformation (SPD) processing by accumulative roll bonding and investigated with the aim to observe the texture developed during SPD processing. Texture data expressed by pole figures, inverse pole figures, and orientation distribution functions for the (110), (200), and (211) β-Ti peaks were obtained by XRD investigations. The results showed that it is possible to obtain high-intensity share texture modes ({001}〈110〉) and well-developed α and γ-fibers; the most important fiber is the α-fiber ({001}\( \left\langle {1\bar{1}0} \right\rangle \) to {114}\( \left\langle {1\bar{1}0} \right\rangle \) to {112}\( \left\langle {1\bar{1}0} \right\rangle \)). High-intensity texture along certain crystallographic directions represents a way to obtain materials with high anisotropic properties.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. T.G. Nieh and J. Wadsworth, Scripta Metall. Mater. 25, 955 (1991).

    Article  Google Scholar 

  2. P.G. Sanders, J.A. Eastman, and J.R. Weertman, Acta Mater. 45, 4019 (1997).

    Article  Google Scholar 

  3. N. Tsuji, Y. Ito, Y. Saito, and Y. Minamino, Scripta Mater. 47, 893 (2002).

    Article  Google Scholar 

  4. Z. Horita, M. Furukawa, N. Nemoto, A.J. Barnes, and T.G. Langdon, Acta Mater. 48, 3633 (2000).

    Article  Google Scholar 

  5. V.M. Segal, Mater. Sci. Eng. A 338, 331 (2002).

    Article  Google Scholar 

  6. R.Z. Valiev, Y. Estrin, Z. Horita, T.G. Langdon, M.J. Zehetbauer, and Y.T. Zhu, JOM 58, 33 (2006).

    Article  Google Scholar 

  7. R.Z. Valiev and T.G. Langdon, Prog. Mater Sci. 51, 881 (2006).

    Article  Google Scholar 

  8. Y. Saito, N. Tsuji, H. Utsunomiya, T. Sakai, and R.G. Hong, Scripta Mater. 39, 1221 (1998).

    Article  Google Scholar 

  9. R.Z. Valiev, N.A. Krasilnikov, and N.K. Tsenev, Mater. Sci. Eng. A 197, 35 (1991).

    Google Scholar 

  10. R.Z. Valiev, Mater. Sci. Eng. A 234–236, 59 (1997).

    Google Scholar 

  11. J.Y. Huang, Y.T. Zhu, H. Jiang, and T.C. Lowe, Acta Mater. 49, 1497 (2001).

    Article  Google Scholar 

  12. S. Mizunuma, Mater. Sci. Forum 503–504, 185 (2005).

    Google Scholar 

  13. K. Nakamura, K. Neishi, K. Kaneko, M. Nakagaki, and Z. Horita, Mater. Trans. 45, 3338 (2004).

    Article  Google Scholar 

  14. G. Krallics and J.G. Lenard, J. Mater. Proc. Technol. 152, 154 (2004).

    Article  Google Scholar 

  15. N. Kamikawa, T. Sakai, and N. Tsuji, Acta Mater. 55, 5873 (2007).

    Article  Google Scholar 

  16. A. Azushima, R. Kopp, A. Korhonen, D.Y. Yang, F. Micari, G.D. Lahoti, P. Groche, J. Yanagimoto, N. Tsuji, A. Rosochowski, and A. Yanagida, CIRP Ann. Manufact. Technol. 57, 716 (2008).

    Article  Google Scholar 

  17. M. Holscher, D. Raabe, and K. Lucke, Acta Metall. Mater. 42, 879 (1994).

    Article  Google Scholar 

  18. D. Raabe and K. Lucke, Mater. Sci. Technol. 9, 302 (1993).

    Article  Google Scholar 

  19. B. Sander and D. Raabe, Mat. Sci. Eng. A 479, 236 (2008).

    Article  Google Scholar 

  20. R. Mythili, V. Thomas Paul, S. Saroja, M. Vijayalakshmi, and V.S. Raghunathan, Mater. Sci. Eng. A 390, 299 (2005).

    Article  Google Scholar 

  21. C.J. Boehlert, Mater. Sci. Eng. A 267, 82 (1999).

    Article  Google Scholar 

  22. K. Wang, Mater. Sci. Eng. A 213, 134 (1996).

    Article  Google Scholar 

  23. M. Niinomi, Sci. Technol. Adv. Mater. 4, 445 (2003).

    Article  Google Scholar 

  24. Y. Song, R. Yang, and Z.X. Guo, Mater. Trans. 43, 3028 (2002).

    Article  Google Scholar 

  25. E. Takahashi, T. Sakurai, S. Watanabe, N. Masahashi, and S. Hanada, Mater. Trans. 43, 2978 (2002).

    Article  Google Scholar 

  26. G. Yang and T. Zhang, J. Alloys Compd. 392, 291 (2005).

    Article  Google Scholar 

  27. M. Niinomi, Mater. Sci. Eng. A 243, 231 (1998).

    Article  Google Scholar 

  28. M. Long and H.J. Rack, Biomaterials 19, 1621 (1998).

    Article  Google Scholar 

  29. I. Lonardelli, N. Gey, H.R. Wenk, M. Humbert, S.C. Vogel, and L. Lutterotti, Acta Mater. 55, 5718 (2007).

    Article  Google Scholar 

  30. M.L. Weaver and H. Garmestani, Mater. Sci. Eng. A 247, 229 (1998).

    Article  Google Scholar 

  31. M.R. Bache and W.J. Evans, Mater. Sci. Eng. A 319, 409 (2001).

    Article  Google Scholar 

  32. A.N. Kalinyuk, N.P. Trigub, V.N. Zamkov, O.M. Ivasishin, P.E. Markovsky, R.V. Teliovich, and S.L. Semiatin, Mater. Sci. Eng. A 346, 178 (2003).

    Article  Google Scholar 

  33. S. Zaefferer, Mater. Sci. Eng. A 344, 20 (2003).

    Article  Google Scholar 

  34. S.L. Semiatin, P.N. Fagin, M.G. Glavicic, I.M. Sukonnik, and O.M. Ivasishin, Mater. Sci. Eng. A 299, 225 (2001).

    Article  Google Scholar 

  35. D. Raducanu, V.D. Cojocaru, I. Cinca, and I. Sichin, J. Optoelectron. Adv. Mater. 9, 3346 (2007).

    Google Scholar 

  36. L. Zeng and T.R. Bieler, Mater. Sci. Eng. A 392, 403 (2005).

    Article  Google Scholar 

  37. F. Bachmann, R. Hielscher, and H. Schaeben, Solid State Phenom. 160, 63 (2010).

    Article  Google Scholar 

  38. F. Bachmann, R. Hielscher, P.E. Jupp, W. Pantleon, H. Schaeben, and E. Wegert, J. Appl. Crystallogr. 43, 1338 (2010).

    Article  Google Scholar 

  39. J. He, F. Zhou, G. Chang, and E.J. Lavernia, J. Mater. Sci. 36, 2955 (2001).

    Article  Google Scholar 

  40. E. Bertrand, P. Castany, I. Peron, and T. Gloriant, Scripta Mater. 64, 1110 (2011).

    Article  Google Scholar 

  41. H.Y. Kim, T. Sasaki, K. Okutsu, J.I. Kim, T. Inamura, H. Hosada, and S. Myazaki, Acta Mater. 24, 423 (2006).

    Article  Google Scholar 

  42. N.P. Gurao and S. Suwas, Mater. Sci. Eng. A 504, 24 (2009).

    Article  Google Scholar 

  43. Z. Ahmed and A. Ul Haq, J. Magn. Magn. Mater. 321, 325 (2009).

    Article  Google Scholar 

  44. C. Chen, M.P. Wang, S. Wang, Y.L. Jia, R.S. Lei, F.X. Zia, B. Huo, and H.C. Yu, J. Alloys Compd. 513, 208 (2012).

    Article  Google Scholar 

  45. O. Engler, M.Y. Huh, and C.N. Tome, Metall. Mater. Trans. A 31, 2299 (2000).

    Article  Google Scholar 

  46. G. Liu and B.J. Duggan, Metall. Mater. Trans. A 32, 125 (2001).

    Article  Google Scholar 

  47. T. Karthikeyan, A. Dasgupta, R. Khatirkar, S. Saroja, I. Samajdar, and M. Vijayalakshmi, Mater. Sci. Eng. A 528, 549 (2010).

    Article  Google Scholar 

  48. S. Banumathy, R.K. Mandal, and A.K. Singh, J. Alloys Compd. 500, L26 (2010).

    Article  Google Scholar 

  49. Y.B. Park, D.N. Lee, and G. Gottstein, Acta Mater. 46, 3371 (1998).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vasile-Danut Cojocaru.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Cojocaru, VD., Raducanu, D., Gloriant, T. et al. Texture Evolution in a Ti-Ta-Nb Alloy Processed by Severe Plastic Deformation. JOM 64, 572–581 (2012). https://doi.org/10.1007/s11837-012-0312-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-012-0312-6

Keywords

  • Severe Plastic Deformation
  • Accumulative Roll Bonding
  • Texture Index
  • Texture Mode
  • Severe Plastic Deformation Processing