, Volume 64, Issue 4, pp 475–485 | Cite as

Flexible Dermal Armor in Nature

  • Wen Yang
  • Irene H. Chen
  • Joanna Mckittrick
  • Marc A. Meyers


Many animals possess dermal armor, which acts primarily as protection against predators. We illustrate this through examples from both our research and the literature: alligator, fish (alligator gar, arapaima, and Senegal bichir), armadillo, leatherback turtle, and a lizard, the Gila monster. The dermal armor in these animals is flexible and has a hierarchical structure with collagen fibers joining mineralized units (scales, tiles, or plates). This combination significantly increases the strength and flexibility in comparison with a simple monolithic mineral composite or rigid dermal armor. This dermal armor is being studied for future bioinspired armor applications providing increased mobility.


Collagen Fiber Collagen Fibril External Layer Internal Layer Fish Scale 



We thank Gaspar Ritter, owner of the Kuryala Lodge, Araguaia River, Brazil, for the arapaima scales, and Diane Ulery Natural Art Jewelry, Louisiana, for the alligator gar scales. This research is funded by the National Science Foundation, Division of Materials Research, Grant #1006931, and by the UC Lab Fees Research Program No. 09-LR-06-118456-MEYM. Special gratitude goes to Mr. Yenshan Lin who prepared the arapaimas specimens and Professor Po-Yu Chen, National Tsing Hua University, Taiwan, ROC, for helpful discussions. We thank Prof. C. Ortiz for authorizing the use of Fig. 7.


  1. 1.
  2. 2.
  3. 3.
    Nine-banded armadillo. Photograph, Encyclopædia Britannica Online, Web. 4 Jan. 2012,,
  4. 4.
    M. Brain, Alligator Osteoderm, How Stuff Works “Science”, Web, 04 Jan 2012.Google Scholar
  5. 5.
    J. Serross, Arizona Ecological Services Fish and Wildlife Service (U.S. Fish and Wildlife Service Home. U.S. Fish and Wildlife Service), 10 June 2008, Web, 04 Jan. 2012,
  6. 6.
    M.R. Seidel, Herpetologica 35, 375 (1979).Google Scholar
  7. 7.
    P.Y. Chen, J. Schirer, A. Simpson, R. Nay, Y.-S. Lin, W. Yang, M.I. Lopez, J.N. Li, E.A. Olevsky, and M.A. Meyers, J. Mater. Res. 27, 100 (2012).CrossRefGoogle Scholar
  8. 8.
    J.-Y. Sire, Am. J. Anat. 186, 315 (1989).CrossRefGoogle Scholar
  9. 9.
    Z. Vokac, N.E.D. Ahmed, and A.M.A. Magid, J. Exp. Biol. 57, 461 (1972).Google Scholar
  10. 10.
    B.J.F. Bruet, J.H. Song, M.C. Boyce, and C. Ortiz, Nature 7, 748 (2008).CrossRefGoogle Scholar
  11. 11.
    K.D. Jandt, Nat. Mater. 7, 692 (2008).CrossRefGoogle Scholar
  12. 12.
    I.H. Chen, J.H. Kiang, V. Correa, M.I. Lopez, P.-Y. Chen, J. McKittrick, and M.A. Meyers, J. Mech. Behav. Biomed. Mater. 4, 713 (2011).CrossRefGoogle Scholar
  13. 13.
    Y.-S. Lin, C.T. Wei, E.A. Olevsky, and M.A. Meyers, J. Mech. Behav. Biomed. Mater. 4, 1145 (2011).CrossRefGoogle Scholar
  14. 14.
    D. Zhu, C.F. Ortega, R. Motamedi, L. Szewciw, F. Vernerey, and F. Barthelat, Adv. Eng. Mater. 13, B1 (2011).CrossRefGoogle Scholar
  15. 15.
    M.K. Vickaryous and B.K. Hall, J. Morph. 267, 1273 (2006).CrossRefGoogle Scholar
  16. 16.
    L. Han, L.F. Wang, J. Song, M.C. Boyce, and C. Ortiz, Nano Lett. 11, 3868–3874 (2011).CrossRefGoogle Scholar
  17. 17.
    M.A. Meyers, Y.S. Lin, E.A. Olevsky, and P.-Y. Chen, Adv. Biomater., in press.Google Scholar
  18. 18.
    F.J. Vernerey and F. Barthelat, Int. J. Solids Struct. 47, 2268 (2010).MATHCrossRefGoogle Scholar
  19. 19.
    J. Song, C. Ortiz, and M.C. Boyce, J. Mech. Behav. Biomed. Mater. 4, 699 (2010).CrossRefGoogle Scholar
  20. 20.

Copyright information

© TMS 2012

Authors and Affiliations

  • Wen Yang
    • 1
  • Irene H. Chen
    • 1
  • Joanna Mckittrick
    • 1
    • 2
  • Marc A. Meyers
    • 1
    • 2
  1. 1.Materials Science and Engineering ProgramUniversity of California, San DiegoLa JollaUSA
  2. 2.Department of Mechanical and Aerospace EngineeringUniversity of California, San DiegoLa JollaUSA

Personalised recommendations