Abstract
Diffuse scattering contains rich information on various structural disorders, thus providing a useful means to study the nanoscale structural deviations from the average crystal structures determined by Bragg peak analysis. Extraction of maximal information from diffuse scattering requires concerted efforts in high-quality three-dimensional (3D) data measurement, quantitative data analysis and visualization, theoretical interpretation, and computer simulations. Such an endeavor is undertaken to study the correlated dynamic atomic position fluctuations caused by thermal vibrations (phonons) in precursor state of shape-memory alloys. High-quality 3D diffuse scattering intensity data around representative Bragg peaks are collected by using in situ high-energy synchrotron x-ray diffraction and two-dimensional digital x-ray detector (image plate). Computational algorithms and codes are developed to construct the 3D reciprocal-space map of diffuse scattering intensity distribution from the measured data, which are further visualized and quantitatively analyzed to reveal in situ physical behaviors. Diffuse scattering intensity distribution is explicitly formulated in terms of atomic position fluctuations to interpret the experimental observations and identify the most relevant physical mechanisms, which help set up reduced structural models with minimal parameters to be efficiently determined by computer simulations. Such combined procedures are demonstrated by a study of phonon softening phenomenon in precursor state and premartensitic transformation of Ni-Mn-Ga shape-memory alloy.
This is a preview of subscription content, access via your institution.







References
A.G. Khachaturyan, Theory of Structural Transformations in Solids (New York: Wiley, 1983).
J.A. Krumhansl, Mater. Sci. Forum 327–328, 1 (2000).
L.E. Tanner, Philos. Mag. 14, 111 (1966).
A. Zheludev, S.M. Shapiro, P. Wochner, A. Schwartz, M. Wall, and L.E. Tanner, Phys. Rev. B 51, 11310 (1995).
Y.M. Jin and Y.U. Wang, JOM 64(1) (2012). doi:10.1007/s11837-011-0211-2.
T.R. Welberry and D.J. Goossens, Acta Crystallogr. A A64, 23 (2008).
T.L. Cheng, F.D. Ma, J.E. Zhou, G. Jennings, Y. Ren, Y.M. Jin, and Y.U. Wang, to be published.
A. Zheludev, S.M. Shapiro, P. Wochner, and L.E. Tanner, Phys. Rev. B 54, 15045 (1996).
A. Planes, E. Obrado, A. Gonzalez-Comas, and L. Manosa, Phys. Rev. Lett. 79, 3926 (1997).
Acknowledgments
This work was supported by NSF under Award No. DMR-1002521 and by Materials Sciences and Engineering Division, Office of Basic Energy Sciences (DOE) under Award No. DE-FG02-09ER46674. Use of the Advanced Photon Source, an Office of Science User Facility operated for US DOE Office of Science by Argonne National Laboratory, was supported by DOE under Contract No. DE-AC02-06CH11357.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Cheng, TL., Ma, F.D., Zhou, J.E. et al. In Situ Three-Dimensional Reciprocal-Space Mapping of Diffuse Scattering Intensity Distribution and Data Analysis for Precursor Phenomenon in Shape-Memory Alloy. JOM 64, 167–173 (2012). https://doi.org/10.1007/s11837-011-0228-6
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11837-011-0228-6
Keywords
- Bragg Peak
- Diffuse Scattering
- Phonon Dispersion Curve
- Precursor State
- Phonon Softening