, Volume 64, Issue 1, pp 140–149 | Cite as

High-Energy Synchrotron X-Ray Diffraction and Its Application to In Situ Structural Phase-Transition Studies in Complex Sample Environments



A solid may undergo a phase transition due to internal interaction competition or external stimuli. It is increasingly recognized that the lattice degrees of freedom often play a crucial role, especially in the vicinity of competing phases, where many intriguing properties exist. A crystal structure transition is usually accompanied by a drastic change in the mechanical, electrical, magnetic, and other properties. In situ study of the microscopic structural information of materials during phase transformation is of ultimate importance not only in understanding fundamental mechanisms but also in developing and processing advanced materials for broad technological applications. The availability of synchrotron-generated high-flux and high-energy x-rays has significantly advanced the field of materials research because of the deep penetration and low absorption of high-energy x-rays. Synchrotron high-energy x-ray diffraction facilities provide great research opportunities, especially for probing structural phase transformations of bulk materials in real time and in realistic conditions. In this overview we present technical details and capabilities of a synchrotron high-energy x-ray facility and its applications to in situ structural investigations of phase transitions in advanced materials in research areas ranging from condensed-matter and materials science and engineering to energy science.


  1. 1.
    S.J.L. Billinge and I. Levin, Science 316, 561 (2007).CrossRefGoogle Scholar
  2. 2.
    L.D. Landau and E.M. Lifshitz, Statistical Physics (London: Pergamon, 1958).MATHGoogle Scholar
  3. 3.
    M.F. Collins, Magnetic Critical Scattering (New York: Oxford University Press, 1989).Google Scholar
  4. 4.
    M. Uehara, S. Mori, C.H. Chen, and S.-W. Cheong, Nature 399, 560 (1999).CrossRefGoogle Scholar
  5. 5.
    N. Mathur, Nature 400, 405 (1999).CrossRefGoogle Scholar
  6. 6.
    K.H. Ahn, T. Lookman, and A.R. Bishop, Nature 428, 401 (2004).CrossRefGoogle Scholar
  7. 7.
    T.Z. Ward, J.D. Budai, Z. Gai, J.Z. Tischler, Lifeng Yin, and J. Shen, Nat. Phys. 5, 885 (2009).CrossRefGoogle Scholar
  8. 8.
    B. Jaffe, R.S. Roth, and S. Marzullo, J. Appl. Phys. 25, 809 (1954).CrossRefGoogle Scholar
  9. 9.
    E. Cross, Nature 432, 24 (2004).CrossRefGoogle Scholar
  10. 10.
    M. Ahart, M. Somayazulu, R.E. Cohen, P. Ganesh, P. Dera, H-k Mao, R.J. Hemley, Y. Ren, P. Lierman, and Z.G. Wu, Nature 451, 545 (2008).CrossRefGoogle Scholar
  11. 11.
    V.K. Pecharsky and K.A. Gschneidner Jr., Phys. Rev. Lett. 78, 4494 (1997).CrossRefGoogle Scholar
  12. 12.
    S. Gama, A.A. Coelho, A. de Campos, A.M.G. Carvalho, F.C.G. Gandra, P.J. von Ranke, and N.A. de Oliveira, Phys. Rev. Lett. 93, 237202 (2004).CrossRefGoogle Scholar
  13. 13.
    K. Ullakko, J.K. Huang, C. Kantner, R.C. O’Handley, and V.V. Kokorin, Appl. Phys. Lett. 69, 1966 (1996).CrossRefGoogle Scholar
  14. 14.
    R. Kainuma, Y. Imano, W. Ito, Y. Sutou, H. Morito, S. Okamoto, O. Kitakami, K. Oikawa, A. Fujita, T. Kanomata, and K. Ishida, Nature 439, 957 (2006).CrossRefGoogle Scholar
  15. 15.
    H.E. Karaca, I. Karaman, B. Basaran, Y. Ren, Y.I. Chumlyakov, and H.J. Maier, Adv. Funct. Mater. 19, 1 (2009).CrossRefGoogle Scholar
  16. 16.
    A.J. Millis, Nature 392, 147 (1998).CrossRefGoogle Scholar
  17. 17.
    U. Rütta, M.A. Beno, J. Strempfer, G. Jennings, C. Kurtz, and P.A. Montano, Nucl. Inst. Methods Phys. Res. A 467–468, 1026 (2001).CrossRefGoogle Scholar
  18. 18.
    Z.H. Chen, Y. Ren, Y. Qin, H.M. Wu, S.Q. Ma, J.G. Ren, X.M. He, Y.K. Sun, and K. Amine, J. Mater. Chem. 21, 5604 (2011).CrossRefGoogle Scholar
  19. 19.
    T.-L. Cheng, F.D. Ma, J.E. Zhou, G. Jennings, Y. Ren, Y.M. Jin, and Yu.U. Wang, JOM. doi:10.1007/s11837-011-0228-6.
  20. 20.
    Y.D. Wang, Z.H. Nie, Y. Ren, and P.K. Liaw, JOM. doi:10.1007/s11837-011-0221-0.
  21. 21.
    P. Schiffer, A.P. Ramirez, W. Bao, and S.-W. Cheong, Phys. Rev. Lett. 75, 3336 (1995).CrossRefGoogle Scholar
  22. 22.
    J.W. Lynn, D.N. Argyriou, Y. Ren, Y. Chen, Y.M. Mukovskii, and D.A. Shulyatev, Phys. Rev. B 76, 014437 (2007).CrossRefGoogle Scholar
  23. 23.
    G. Burns and F.H. Dacol, Solid State Commun. 48, 853 (1983).CrossRefGoogle Scholar
  24. 24.
    I.-K. Jeong, T.W. Darling, J.K. Lee, Th Proffen, R.H. Heffner, J.S. Park, K.S. Hong, W. Dmowski, and T. Egami, Phys. Rev. Lett. 94, 147602 (2005).CrossRefGoogle Scholar
  25. 25.
    P. Ganesh, E. Cockayne, M. Ahart, R.E. Cohen, B. Burton, R.J. Hemley, Y. Ren, W.G. Yang, and Z.-G. Ye, Phys. Rev. B 81, 144102 (2010).CrossRefGoogle Scholar
  26. 26.
    G.Y. Xu, G. Shirane, J.R.D. Copley, and P.M. Gehring, Phys. Rev. B 69, 064112 (2004).CrossRefGoogle Scholar
  27. 27.
    F. Ye, Y. Ren, Q. Huang, J.A. Fernandez-Baca, P.C. Dai, J.W. Lynn, and T. Kimura, Phys. Rev. B 73, 220404(R) (2006).Google Scholar
  28. 28.
    T.T. Truong, Y. Qin, Y. Ren, Z.H. Chen, M.K. Chan, J.P. Greeley, K. Amine, and Y.G. Sun, Adv. Mater. 23, 4947 (2011).CrossRefGoogle Scholar

Copyright information

© TMS 2012

Authors and Affiliations

  1. 1.X-ray Science Division, Advanced Photon SourceArgonne National LaboratoryArgonneUSA

Personalised recommendations