Skip to main content
Log in

Atoms to autos: A multi-scale approach to modeling aluminum deformation

  • Overview
  • Multi-scale Modeling of Metal Forming
  • Published:
JOM Aims and scope Submit manuscript

Abstract

A multi-scale, computational design approach for aluminum sheet alloys, which includes key inputs from the electronic, atomistic, microstructural, and continuum length scales, is reviewed within the context of room and elevated temperature forming. Specific examples, which are aimed at improving aluminum sheet materials for automobile components, include prediction of flow curves from tensile testing, forming limit diagrams, and component forming.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.A. Ayres, Metall. Trans. A, 10A (1979), pp. 849–854.

    CAS  Google Scholar 

  2. W.H.L. Hooper, J. Institute of Metals, 81 (1952), pp. 563–568.

    Google Scholar 

  3. G. Kresse and J. Furthmüller, Comput. Mat. Sci., 6 (1996), pp. 15–50.

    Article  CAS  Google Scholar 

  4. C. Woodward and S. Rao, Phys. Rev. Lett., 88 (2002), pp. 216402, 1–4.

    Article  CAS  Google Scholar 

  5. J. Hafner, J. Phys.: Condens. Matter, 22 (2010), pp. 384205, 1–12.

    Article  Google Scholar 

  6. G.P.M. Leyson, W.A. Curtin, L.G. Hector, Jr., and C.F. Woodward, Nature Materials, 9 (2010), pp. 750–755.

    Article  CAS  Google Scholar 

  7. B.J. Diak and S. Saimoto, Mater. Sci. Eng. A, 234 (1997), pp. 1019–1022.

    Article  Google Scholar 

  8. B.J. Diak, K.R. Upadhyaya, and S. Saimoto, Prog. Mater. Sci., 43 (1998), pp. 223–363.

    Article  CAS  Google Scholar 

  9. W.A. Curtin, D.L. Olmsted, and L.G. Hector, Jr., Nature Materials, 5 (2006), pp. 875–880.

    Article  CAS  Google Scholar 

  10. S. Kok, M.S. Bharathi, A.J. Beaudoin, C. Fressengeas, G. Ananthakrishna, L.P. Kubin, and M. Lebyodkin, Acta Materialia, 51 (2003), pp. 3651–3662.

    Article  CAS  Google Scholar 

  11. M.A. Soare and W.A. Curtin, Acta Materialia, 56 (2008), pp. 4046–4061.

    Article  CAS  Google Scholar 

  12. F. Zhang, A.F. Bower, and W.A. Curtin, Int. J. Numerical Methods in Eng., 86 (2011), pp. 70–92.

    Article  Google Scholar 

  13. T. Rasmussen, T. Vegge, T. Leffers, O.B. Pedersen, and K.W. Jacobsen, Phil. Mag. A, 80 (2000), pp. 1273–1290.

    Article  CAS  Google Scholar 

  14. G.I. Taylor, J. Inst. Met., 62 (1938), pp. 307–325.

    Google Scholar 

  15. W.T. Koiter, Quart. Appl. Math., 11 (1953), pp. 350–354.

    Google Scholar 

  16. D. Peirce, R.J. Asaro, and A. Needleman, Acta Metall., 31 (1983), pp. 1951–1976.

    Article  CAS  Google Scholar 

  17. J. Rossiter, A. Brahme, M.H. Simha, K. Inal, and R.K. Mishra, Int. J. Plasticity, 26 (2010), pp. 1702–1725.

    Article  CAS  Google Scholar 

  18. K.P. Boyle, Materials Science Forum, 495–497 (2005), pp. 1043–1048.

    Article  Google Scholar 

  19. K.H. Kim and Y.M. Koo, J. Mater. Sci. Letters, 20 (2001), pp. 625–627.

    Article  CAS  Google Scholar 

  20. A. Brahme, P. Abhijit, K. Inal, R.K. Mishra, and S. Saimoto, Computational Materials Science, 50 (2011), pp. 2898–2909.

    Article  CAS  Google Scholar 

  21. F. Zhang, A.F. Bower, R.K. Mishra, and K.P. Boyle, Int. J. Plasticity, 25 (2009), pp. 49–69.

    Article  Google Scholar 

  22. nominally binary Fe ppm. 23. A.I. Taub, P.E. Krajewski, A.A. Luo, and J.N. Owens, JOM, 59(2) (2007), pp. 48–57.

    Article  CAS  Google Scholar 

  23. Y. Qi and P.E. Krajewski, Acta Materialia, 55 (2007), pp. 1555–1563.

    Article  CAS  Google Scholar 

  24. N. Du, Y. Qi, P.E. Krajewski, and A.F. Bower, Acta Materialia, 58 (2010), pp. 4245–4252.

    Article  CAS  Google Scholar 

  25. A.F. Bower and E. Wininger, J. Mechanics and Physics of Solids, 52 (2004), pp. 1289–1317.

    Article  Google Scholar 

  26. S. Agarwal, C.L. Briant, P.E. Krajewski, A.F. Bower, and E.M. Taleff, J. Mater. Eng. Perform., 16 (2007), pp. 170–178.

    Article  CAS  Google Scholar 

  27. M.A. Kulas, W.P. Green WP, E.M. Taleff, P.E. Krajewski, and T.R. McNelley, Metall. Mater. Trans. A, 36 (2005), pp. 1249–1261.

    Article  Google Scholar 

  28. W.P. Green, M.A. Kulas, A. Niazi, K. Oh-ishi, E.M. Taleff, and P.E. Krajewski, Metall. Mater. Trans. A, 37 (2006), pp. 2727–2738.

    Article  Google Scholar 

  29. J.R. Bradley, Superplasticity and Superplastic Forming, ed. E.M. Taleff, P.A. Friedman, P.E. Krajewski, R.S. Mishra, and J.G. Schroth (Warrendale, PA: TMS, 2004), pp. 109–118.

    Google Scholar 

  30. P.E. Krajewski, L.G. Hector, Jr., N. Du, and A. Bower, Acta Materialia, 58 (2010), pp. 1074–1086.

    Article  CAS  Google Scholar 

  31. N. Du, A.F. Bower, P.E. Krajewski, and E.M. Taleff, Mater. Sci. and Eng. A, 494 (2008), pp. 86–81.

    Article  Google Scholar 

  32. D. Cipoletti, A. Bower Y. Qi, and P.E. Krajewski, Mater. Sci. and Eng. A, 504 (2009), pp. 175–182.

    Article  Google Scholar 

  33. N. Du, Y. Qi, P.E. Krajewski, and A.F. Bower, Metall. Mater. Trans. A, 42 (2011), pp. 651–659.

    Article  CAS  Google Scholar 

  34. F. Zhang and W.A. Curtin, Mater. Sci. and Eng., 16 (2008), pp. 1–18.

    Article  Google Scholar 

  35. S.J. Dillon, M. Tang, W.C. Carter, and M.P. Harmer, Acta Materialia, 55 (2007), pp. 6208–6218.

    Article  CAS  Google Scholar 

  36. N. Chetty, M. Weinert, T.S. Rahman, and J.W. Davenport, Phys. Rev. B, 52 (1995), pp. 6313–6326.

    Article  Google Scholar 

  37. B. Jelinek, J. Houze, S. Kim, M.F. Horstemeyer, M.I. Baskes, and S.G. Kim, Phys. Rev. B, 75 (2007), 1–9.

    Article  Google Scholar 

  38. Y. Mishin, W.J. Boettinger, J.A. Warren, and G.B. McFadden, Acta Materialia, 57 (2009), pp. 3771–3785.

    Article  CAS  Google Scholar 

  39. J.R. Davies, ASM Specialty Handbook: Aluminum and Aluminum Alloys (Materials Park, OH: ASM International, 1993), pp. 579–580.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. E. Krajewski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krajewski, P.E., Hector, L.G., Qi, Y. et al. Atoms to autos: A multi-scale approach to modeling aluminum deformation. JOM 63, 24–32 (2011). https://doi.org/10.1007/s11837-011-0187-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-011-0187-y

Keywords

Navigation