Skip to main content
Log in

Reducing impurities of multicrystalline silicon in a unidirectional solidification furnace for solar cells

  • Electronic Materials Solidification
  • Research Summary
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Multicrystalline silicon has now become the main material in the photovoltaic market because of its low production cost and the relative high conversion efficiency of solar cells made from this material. Effective control of carbon and oxygen impurities in the crystal is required for the production of a high-quality component. In order to reduce impurity levels in a unidirectional solidification furnace, it is proposed to add a crucible cover to the casting process. Results from numerical simulations indicate a marked reduction of carbon impurity in a multicrystalline silicon ingot. The effect of crucible cover material on impurities in multicrystalline silicon was also investigated. These results show that the carbon concentration within the silicon ingot can be reduced by 10 times if the cover is made from carbon and by 1,000 times if the cover is made from tungsten. These results show that an effective and economical method for designing a cover is to use carbon and deposit a thin layer of tungsten on it. Experimental tests have also been carried out by placing a tungsten cover above the crucible. Results indicated that the carbon impurity has significantly decreased; however, the measured carbon concentration in the crystal is larger than the theoretically predicted value, despite the use of a crucible cover. A theoretical analysis has shown that this difference is due to a reaction between the crucible and the graphite susceptor. Furthermore, global simulations have shown that this reaction has a marked effect on carbon and oxygen impurities. When the carbon activity on the surface of the graphite susceptor increases, both oxygen and carbon impurities in crystal increase rapidly. Therefore, the production of high-purity multicrystalline silicon can be improved by designing a crucible cover with a thin layer of tungsten on it and by setting a free space between the silica crucible and the graphite susceptor to prevent reaction between them.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Matsuo, R.B. Ganesh, S. Nakano, L.J. Liu, Y. Kangawa, K. Arafune, Y. Ohshita, M. Yamaguchi, and K. Kakimoto, J. Crystal Growth, 310 (2008), pp. 2204–2208.

    Article  CAS  Google Scholar 

  2. D.E. Bornside and R.A. Brown, J. Electrochem. Soc., 142 (1995), pp. 2790–2804.

    Article  CAS  Google Scholar 

  3. T. Fukuda, M. Koizuka, and A. Ohsawa, J. Electrochem. Soc., 141 (1994), pp. 2216–2220.

    Article  Google Scholar 

  4. Q. Sun, K.H. Yao, J. Lagowski, and H.C. Gatos, J. Appl. Phys., 67 (1990), pp. 4313–4319.

    Article  CAS  Google Scholar 

  5. M. Ogino, Appl. Phys. Lett., 41 (1982), pp. 847–849.

    Article  CAS  Google Scholar 

  6. B.O. Kolbesen, in The Electrochemical Society Proceedings Series, Vol. 83–4, ed. E. Sirtl and J. Goorissen (Pennington, NJ: The Electrochemical Society, 1983), pp. 155–175.

    Google Scholar 

  7. U. Goesele, in Mater. Res. Soc. Symp. Proc., ed. J.C. Mikkelsen, Jr., S.P. Pearton, J.W. Corbett, and S.J. Pennycook (Pittsburgh, PA: MRS, 1986), p. 419.

    Google Scholar 

  8. F. Shimura, Semiconductor Silicon Crystal Technology (New York: Academic Press, 1989), p. 148

    Google Scholar 

  9. T. Abe, in VLSI Electronics Microstructure Science Series, Vol. 12, ed. N.G. Einspruch and H. Huff (New York: Academic Press, Inc., 1985), p. 3.

    Google Scholar 

  10. U. Goesele and T.Y. Tan, Appl. Phys. A, 28 (1982), pp. 79–92.

    Article  Google Scholar 

  11. J. Bauer, O. Breitenstein, and J.P. Rakotoniaina, Proceedings of 21st EUPVSEC (Brussels, Belgium: European Photovoltaic Industry Association, 2006), p. 1115.

    Google Scholar 

  12. S. Pizzini, A. Sandrinelli, M. Beghi, D. Narducci, F. Allegretti, S. Torchio, G. Fabbri, G.P. Ottaviani, F. Demartin, and A. Fusi, J. Electrochem. Soc., 135 (1988), pp. 155–165.

    Article  CAS  Google Scholar 

  13. H.J. Moller, L. Long, M. Werner, and D. Yang, Phys. Status Solidi A, 171 (1999), pp. 175–189.

    Article  Google Scholar 

  14. H.J. Moller, C. Funke, A. Lawerenz, S. Riedel, and M. Werner, Sol. Energy Mater. Sol. Cells, 72 (2002), pp. 403–416.

    Article  CAS  Google Scholar 

  15. V.V. Bolotov, M.D. Efremov, I. Babanskaya, and K. Schmalz, Mater. Sci. Eng. B, 21 (1993), pp. 49–54.

    Article  Google Scholar 

  16. L.J. Liu, S. Nakano, and K. Kakimoto, J. Crystal Growth, 303 (2007), pp. 165–169.

    Article  CAS  Google Scholar 

  17. H. Miyazawa, L.J. Liu, S. Hisamatsu, and K. Kakimoto, J. Crystal Growth, 310 (2008), pp. 1034–1039.

    Article  CAS  Google Scholar 

  18. X.J. Chen, S. Nakano, L.J. Liu, and K. Kakimoto, J. Crystal Growth, 310 (2008), pp. 4330–4335.

    Article  CAS  Google Scholar 

  19. S. Nakano, L.J. Liu, X.J. Chen, H. Matsuo, and K. Kakimoto, J. Crystal Growth, 311 (2009), pp. 1051–1055.

    Article  CAS  Google Scholar 

  20. B. Gao, X.J. Chen, S. Nakano, and K. Kakimoto, J. Crystal Growth, 312 (2010), pp. 1572–1576.

    Article  CAS  Google Scholar 

  21. B. Gao, S. Nakano, and K. Kakimoto, J. Electrochem. Soc., 157 (2010), pp. H153–H159.

    Article  CAS  Google Scholar 

  22. B. Gao and K. Kakimoto, J. Crystal Growth, 312 (2010), pp. 2972–2976.

    Article  CAS  Google Scholar 

  23. R.B. Ganesh, H. Matsuo, T. Kawamura, Y. Kangawa, K. Arafune, Y. Ohshita, M. Yamaguchi, and K. Kakimoto, J. Crystal Growth, 310 (2008), pp. 2697–2701.

    Article  CAS  Google Scholar 

  24. B. Gao, S. Nakano, and K. Kakimoto, J. Crystal Growth, 318 (2011), pp. 255–258.

    Article  CAS  Google Scholar 

  25. B. Gao, S. Nakano, and K. Kakimoto, J. Crystal Growth, 314 (2011), pp. 239–245.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Gao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gao, B., Nakano, S. & Kakimoto, K. Reducing impurities of multicrystalline silicon in a unidirectional solidification furnace for solar cells. JOM 63, 43–46 (2011). https://doi.org/10.1007/s11837-011-0182-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-011-0182-3

Keywords

Navigation