Skip to main content
Log in

VO2 thin films: Defect mediation in room temperature ferromagnetic switching characteristics

  • Magnetic Materials and Devices
  • Overview
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Vanadium dioxide (VO2) has tremendous potential in multifunctional device applications related to spintronics, switching, and magnetic recording. We have discovered that the room temperature ferromagnetism (RTFM) in undoped vanadium oxide epitaxial films can be switched on and off by altering the cooling ambient conditions which exhibit a sharp electrical transition at 341 K. By correlating the structural and ferromagnetic properties in VO2, we envisage the potential for creation of novel multifunctional solid-state devices. High-quality epitaxial VO2 thin films were grown on c-sapphire (0001) substrates, under different ambient conditions via the domain matching epitaxy paradigm. The observed RTFM has its origin in the valence charge defects with unpaired electrons in V+3 in VO2 thin films, where the concentration of the defects could be varied with oxygen partial pressure. The VO2 films-with a high ferro- to paramagnetic transition (Curie) temperature around 500 K estimated by fitting the magnetization data to the Bloch’s T3/2 law, a saturated magnetization of 18 emu/cm3, and with a finite coercivity of 40 Oe at 300 K-can be useful for integrated smart sensors operable at room temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Similar content being viewed by others

References

  1. T. Yang, C. Jin, R. Aggarwal, R.J. Narayan, and J. Narayan, J. Mater. Res., 25 (2010), p. 422.

    Article  CAS  Google Scholar 

  2. M.M. Qazilbash, M. Brehm, B. Chae, P. Ho, G.O. Andreev, B. Kim, S. Yun, A.V. Balastky, M.B. Maple, F. Keilmann, H. Kim, and D.N. Basov, Science, 318 (2007), p. 1750.

    Article  CAS  Google Scholar 

  3. J. Nag and R.F. Haglund, Jr., J. Phys.: Condens. Matter, 20 (2008), p. 264016.

    Article  Google Scholar 

  4. J. Narayan and V.M. Bhosle, J. Appl. Phys., 100 (2006), p. 103524.

    Article  Google Scholar 

  5. T. Yang, R. Aggarwal, A. Gupta, H. Zhou, R.J. Narayan, and J. Narayan, J. Appl. Phys., 107 (2010)., p. 053514

    Article  Google Scholar 

  6. T. Yang, C. Jin, H. Zhou, and J. Narayan, Appl. Phys. Lett., 97 (2010), p. 072101.

    Article  Google Scholar 

  7. C.M. Lampert, Solar Energy Mater., 11 (1984), p. 1.

    Article  CAS  Google Scholar 

  8. R.T. Rajendra Kumar, B. Karunagaran, D. Mangalaraj, S.K. Narayandass, P. Manoravi, M. Joseph, and V. Gopal, Sensors Actuators A, 107 (2003), p. 62.

    Article  Google Scholar 

  9. M. Soltani, M. Chaker, E. Haddad, and R.V. Kruzelesky, J. Vac. Sci. Technol. A, 24 (2006), p. 612.

    Article  CAS  Google Scholar 

  10. V.Yu. Zerov and V.G. Malyarov, J. Opt. Technol., 68 (2001), p. 939.

    Article  Google Scholar 

  11. J. Narayan, Sudhakar Nori, D.K. Pandya, D.K. Avasthi and A.I. Smirnov, Appl. Phys. Lett., 93 (2008), p. 082507.

    Article  Google Scholar 

  12. S. Mal, Sudhakar Nori, J. Narayan, and J.T. Prater, J. Mater. Res., 26 (2011), pp. 1298–1308.

    Article  CAS  Google Scholar 

  13. S. Mal, J. Narayan, Sudhakar Nori, J.T. Prater, and D. Kumar, Solid State Commun., 150(35–36) (2010), pp. 1660–1664.

    Article  CAS  Google Scholar 

  14. S. Mal, Sudhakar Nori, C.M. Jin, J. Narayan, S. Nellutla, A.I. Smornov and J.T. Prater, J. Appl. Phys., 108 (2010), p. 073510.

    Article  Google Scholar 

  15. A. Tiwari, V.M. Bhosle, S. Ramachandran, Sudhakar Nori, J. Narayan, S. Budak, and A. Gupta, Appl. Phys. Lett., 88 (2006), p. 142511.

    Article  Google Scholar 

  16. S. Ramachandran, Ashutosh Tiwari, and J. Narayan, J. Electron. Mater., 33 (2004), p. 1298.

    Article  CAS  Google Scholar 

  17. M. Snure, D. Kumar, and A. Tiwari, JOM, 61(6) (2009), p. 72.

    Article  CAS  Google Scholar 

  18. J. Narayan, Sudhakar Nori, S. Ramachandran, and J.T. Prater, JOM, 61(6) (2009), p, 76.

    Article  CAS  Google Scholar 

  19. R. Lindström et al., Electrochimica Acta, 51 (2006), p. 5001.

    Article  Google Scholar 

  20. T. Yang, S. Nori, H. Zhou, and J. Narayan, Appl. Phys. Lett., 95 (2009), p. 102506.

    Article  Google Scholar 

  21. T. Yang, S. Mal, C. Jin, R.J. Narayan, and J. Narayan, Appl. Phys. Lett., 98 (2011), p. 091102.

    Article  Google Scholar 

  22. T.-H. Yang, Sudhakar Nori, S. Mal, and J. Narayan, Acta Materialia, 59 (2011), p. 6362.

    Article  CAS  Google Scholar 

  23. J. Narayan and B.C. Larson, J. Appl. Phys., 93 (2003), p. 278.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sudhakar Nori.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nori, S., Yang, T.H. & Narayan, J. VO2 thin films: Defect mediation in room temperature ferromagnetic switching characteristics. JOM 63, 29–33 (2011). https://doi.org/10.1007/s11837-011-0170-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-011-0170-7

Keywords

Navigation